Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x
\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy \(GTLN\) của A là 4 khi \(x=-1\)
b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x
\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)
c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x
ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất
ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)
vậy GTLN của C là 2 khi \(x=-1\)
d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y
\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
vậy GTNN của D là 2017 khi \(x=y=-1\)
\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
Vì \(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
Vì \(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
Vì \(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4
a, A=|-x+8|-21
Vì |-x+8|>hoặc =0 với mọi x
suy ra |-x+8|-21>hoặc = -21
Dấu = xảy ra khi và chỉ khi |-x+8|=0
Khi và chỉ khi -x+8=0
Khi và chỉ khi-x=-8
khi và chỉ khi x =8
Vậy GTNN của A là -21 tại x=8
\(A=\left|-x+8\right|-21\)
\(A=\left|-x+8\right|-21\ge-21\)
\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)
\(C=-\left|2x+8\right|-35\)
\(C=-\left|2x+8\right|-35\le-35\)
\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)
a. VT:(x-y)-(x-z)
= x-y-x+z
= z-y
VP:(z+x)-(y+x)
=z+x-y-x
=z-y
=> VT=VP => đpcm.
b. VT:(x-y+z)-(y+z-x)-(x-y)
= x-y+z-y-z+x-x+y
= x-y
VP:(z-y)-(z-x)
= z-y-z+x
= x-y
=> VT=VP => đpcm.
c. VT: a(b+c)-b(a-c)
=ab+ac-ab+bc
= ac+bc
VP: (a+b)c
= ac+bc
=> VT=VP => đpcm.
d. VT: a(b-c)-a(b+d)
= ab-ac-ab-ad
= -ac-ad
VP: -a(c+d)
= -ac-ad
=> VT=VP => đpcm
tương tự...
a, x thuộc { -2017;2017}
b,x thuộc {-2017;2017}
c,x và y đều bằng 0
d, x = -5 ; y = 3
f, không tìm được x, y vì giá trị tuyệt đối của số nguyên luôn là số tự nhiên.
Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...
a: =>15-(x-2)=-13-27=-40
=>x-2=15+40=55
hay x=57
b: =>5-x=-114+12=-102
=>x=107
c: \(\Leftrightarrow\left|x\right|=-1-5=-6\)(vô lý)
d: \(\Leftrightarrow\left|x-3\right|=3\)
=>x-3=3 hoặc x-3=-3
=>x=6 hoặc x=0
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương