Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé
E = | 3x + 1 | + 2| x - y | + 1
\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)
=> MinE = 1 <=> x = y = -1/3
F = 5| x - 1 | + 1/2| 2x + y | + 2020
\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
=> MinF = 2020 <=> x = 1 ; y = -2
C = 2| x - 1 | + | 2x + 3 | - 2020
= | 2x - 2 | + | 2x + 3 | - 2020
= | 2x - 2 | + | -( 2x + 3 ) | - 2020
= | 2x - 2 | + | -2x - 3 | - 2020
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 2 )( -2x - 3 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)
=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)
D = | 3 - 2x | + 2| 1 - x | + 1/2
= | 3 - 2x | + | 2 - 2x | + 1/2
= | -( 3 - 2x ) | + | 2 - 2x | + 1/2
= | 2x - 3 | + | 2 - 2x | + 1/2
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 3 )( 2 - 2x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
Bạn ơi \(2x^2\) chứ ko phải\(x^2\)