Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
Bài 1
a, \(D=1-\left|2x-3\right|\)
Ta có : \(\left|2x-3\right|\ge0\)
\(\Rightarrow1-\left|2x-3\right|\le1\)
Dấu "=" xảy ra khi \(\left|2x-3\right|=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=3:2=\dfrac{3}{2}\)
\(b,\) Ta có : \(\left|10-5x\right|\ge0\Rightarrow\left|10-5x\right|+14,2\ge14,3\Rightarrow-\left|10-5x\right|-14,2\le-14,2\)
Dấu "=" xảy ra khi \(-\left|10-5x\right|=0\)
\(\Leftrightarrow10-5x=0\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=10:5=2\)
Vậy \(Emax=-14,2\Leftrightarrow x=2\)
\(c,\) Ta có : \(\left|5x-2\right|\ge0\)
\(\left|3y-12\right|\ge0\)
⇒ \(\left|5x-2\right|+\left|3y+12\right|-4\ge-4\)
⇒ \(4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left|5x-2\right|=0\\\left|3y+12\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
\(d,\) \(A=5-3\left(2x-1\right)^2\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow3.\left(2x-1\right)^2\ge0\)
\(\Rightarrow3.\left(2x-1\right)^2-5\ge-5\)
\(\Rightarrow5-3\left(2x-1\right)^2\le5\)
Dấu "=" xảy ra khi \(\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(Amax=5\Leftrightarrow x=\dfrac{1}{2}\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
Nguyễn Thanh Hằng Nhã Doanh ngonhuminh nguyen thi vang mấy ban giup mk voi
a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)
\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)
\(\left|2x-3\right|=\dfrac{17}{6}\)
\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)
\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)
vậy...
\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Dấu ngoặc vuông nhé
thánh bấm nhầm
Bài 1:
a: \(B=\left(x+2\right)^2+\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-2 và y=1/5
b: \(C=\left(x+3\right)^4+1\ge1\)
Dấu '=' xảy ra khi x=-3
c: \(D=x^2-4x+4+11=\left(x-2\right)^2+11\ge11\)
Dấu '=' xảy ra khi x=2
\(A=\left|x-1\right|+\left|x-2\right|+\left|4-2x\right|\)
\(\)Áp dụng BĐT: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow A\ge\left|x-1+x-2+4-2x\right|\)
\(\Rightarrow A\ge\left|2x-2x-1-2+4\right|\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x-2< 0\Rightarrow x< 2\\4-2x< 0\Rightarrow4< 2x\Rightarrow2< x\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\Rightarrow x\ge1\\x-2\ge0\Rightarrow x\ge2\\4-2x\ge0\Rightarrow4\ge2x\Rightarrow2\ge x\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=2\)