![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=x^2-2x-6\)
\(A=\left(x^2-2x+1\right)-7\)
\(A=\left(x-1\right)^2-7\)
Mà \(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1
a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)
Dấu '=' xảy ra khi x=1
b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)
Dấu '=' xảy ra khi x=1/2
c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1/3
d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=-6
e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x=3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có : \(A=x^2-20x+101=x^2-20x+100+1\)
\(\left(x-10\right)^2+1\ge1\) \(\Rightarrow A_{min}=1\) khi \(x=10\)
b) ta có : \(B=4x^2+4x+2=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1\ge1\) \(\Rightarrow B_{min}=1\) khi \(x=\dfrac{-1}{2}\)
c) ta có : \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\) \(\Rightarrow C_{min}=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi \(x=10\)
\(B=4x^2+4x+2=\left(4x^2+4x+1\right)+1=\left(2x+1\right)^2+1\ge1\)
Vậy GTNN của B là 1 khi \(x=-\dfrac{1}{2}\)
\(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{18}{4}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{18}{4}\ge-\dfrac{18}{4}\)
Vậy GTNN của C là \(-\dfrac{18}{4}\) khi \(x=\dfrac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)
\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)
Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)
<=> \(\left|x-1\right|+\left|x-3\right|\)
Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:
\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
đẳng thức xảy ra khi \(1\le x\le3\)
Vậy ................
1.
a)
\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)
Đẳng thức xảy ra \(\Leftrightarrow x=2\)
b)
\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
c) ĐK: \(x\ne-1\)
\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)
\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)
\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+6x-3\)
\(=x^2+6x+9-12\)
\(=\left(x+3\right)^2-12\ge-12\)
Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(3x^2\left(x+1\right)-2\left(x+1\right)\)\(=\left(x+1\right)\left(3x^3-2\right)\)
b, \(4x^2\left(x-2y\right)-20x\left(2y-x\right)\)
\(=4x^2\left(x-2y\right)-20x\left[-\left(x-2y\right)\right]\)
\(=4x^2\left(x-2y\right)+20x\left(x-2y\right)\)
\(=\left(4x^2+20x\right)\left(x-2y\right)\)
\(=\left(4x^2+20x\right)\left(x-2y\right)\)
\(=4x\left(x+5\right)\left(x-2y\right)\)
c, \(3x^2y^2\left(a-b+c\right)+2xy\left(b-a-c\right)\)
\(=3x^2y^2\left(a-b+c\right)+2xy\left[-\left(a-b+c\right)\right]\)
\(=3x^2y^2\left(a-b+c\right)-2xy\left(a-b+c\right)\)
\(=\left(3x^2y^2-2xy\right)\left(a-b+c\right)\)
\(=xy\left(3xy-2\right)\left(a-b+c\right)\)
d, \(4x^2-4x+1\)\(=\left(2x\right)^2-2.2x.1+1^2\)\(=\left(2x-1\right)^2\)
j, \(16x^2+24xy+9y^2\)
\(=\left(4x\right)^2+2.4x.3y+\left(3y\right)^2\)
\(=\left(4x-3y\right)^2\)
g, \(x^2-64y^2\)\(=x^2-\left(8y\right)^2\)\(=\left(x-8y\right)\left(x+8y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
a. x2 - 3x + 5
= x2 - 2.x.3/2 + 9/4 + 5 - 9/4
= (x - 3/2)2 + 11/4 \(\ge\)11/4
Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2
b. 4x2 + 4x + 2
= (2x)2 + 2.2x.1 + 1 + 1
= (2x + 1)2 + 1 \(\ge\)1
Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2
c. x2 - 20x + 101
= x2 - 2.x.10 + 100 + 1
= (x - 10)2 + 1 \(\ge\)1
Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.