K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

Ta có: \(A=2\left|x+\frac{3}{5}\right|+3\left|x+\frac{3}{5}\right|+\left|2x-3\right|-x+1\)

Mặt khác ta có:

\(2\left|x+\frac{3}{5}\right|\ge0\)đẳng thức xảy rav=-3/5

\(3\left|x+\frac{3}{5}\right|\ge3\left(x+\frac{3}{5}\right)\)đẳng thức xảy ra \(x\ge\frac{-3}{5}\)

Lại có: \(\left|3-2x\right|\ge3-3x\)đẳng thức xảy ra \(x\le\frac{3}{2}\)

=> \(A\ge0+3\left(x+\frac{3}{5}\right)+3-2x+1=\frac{29}{5}\)

Vậy Min A= 29/5 khi x=-3/5

3 tháng 12 2021

a, \(A=\left|x+2\right|+3\ge3\)

dấu "=" xảy ra\(\Leftrightarrow x=-2\)

Vậy \(A_{min}=3\Leftrightarrow x=-2\)

b,\(B=5+\left|2x-7\right|\ge5\)

dấu "=" xảy ra\(\Leftrightarrow x=\dfrac{7}{2}\)

Vậy \(B_{min}=5\Leftrightarrow x=\dfrac{7}{2}\)

c, \(-\left|4x+5\right|+1\le1\)

dấu "=" xảy ra\(\Leftrightarrow x=-\dfrac{5}{4}\)

Vậy \(C_{max}=1\Leftrightarrow x=-\dfrac{5}{4}\)

d, \(D=3-\left|x+3\right|\le3\)

dấu "=" xảy ra\(\Leftrightarrow x=-3\)

Vậy \(D_{max}=3\Leftrightarrow x=-3\)

30 tháng 10 2021

\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)

28 tháng 7 2019

Ta có: A = 2x2 - 5x - 8 = 2(x2 - 5/2x + 25/16) - 89/8 = 2(x - 5/4)2 - 89/8

Ta luôn có: 2(x - 5/4)2 \(\ge\)\(\forall\)x

=> 2(x - 5/4)2 - 89/8 \(\ge\)-89/8 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

Vậy Min của A = -89/8 tại x = 5/4

Ta có: B = -x2 - 4x + 3 = -(x2 + 4x + 4) + 7 = -(x + 2)2 + 7

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 7 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của B = 7 tại x = -2

3 tháng 8 2016

F = 2( x2+ 6x/2 +9/4) +3 -9/2

GTNN F = -3/2

26 tháng 11 2016

1)\(2x^2+9y^2-6xy-6x-12y+2004\)

\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)

\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)

\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)

Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)

Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)

2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(t=x^2+x\) ta có:

\(t\left(t-4\right)=t^2-4t+4-4\)

\(=\left(t-2\right)^2-4\ge-4\)

Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)

Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)

3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)

\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)

Đặt \(t=x^2+5x+5\) ta có:

\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)

Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)

4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

Đặt \(t=x^2-4x+3\) ta có:

\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)

Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)

Vậy Min=-1 khi x=2

 

 

 

26 tháng 11 2016

Thank you !

\(A\ge1\forall x\)

Dấu '=' xảy ra khi x=0

\(B\ge-5\forall x\)

Dấu '=' xảy ra khi x=0

16 tháng 1 2022

\(A=x^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{min}=1\Leftrightarrow x=0\)

\(B=3x^4-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{min}=-5\Leftrightarrow x=0\)

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0