K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

17 tháng 8 2017

Cho x,y là 2 số dương thỏa mãn x+y=1.CM: $3(3x-2)^2+\frac{8x}{y}\geq 7$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

10 tháng 7 2019

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4