Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow\text{MIN}_{-36}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Trước hết ta chứng minh bổ đề: \(|a|+|b|\ge|a+b|.\left(1\right)\)
CM: \(\left(1\right)\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(|a+b\right)^2\)
\(\Leftrightarrow a^2+b^2+2|ab|\ge a^2+b^2+2ab\)
\(\Leftrightarrow2|ab|\ge2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\)(điều này đúng do tính chất của giá trị tuyệt đối).
Vậy ta có đpcm. Dấu bằng xảy ra \(\Leftrightarrow ab\ge0.\)
a) A = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|.\)
Ta thấy rằng \(\left|x-2\right|\ge0\)với mọi x.
Áp dụng bổ đề trên ta có:
\(A\ge\left|x-1+3-x\right|+0=\left|2\right|+0=2+0=2.\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}}\Leftrightarrow x=2.\)
Vậy GTNN của A bằng 2 khi x = 2.
b) Áp dụng bổ đề trên ta có:\(B=\left|x-4\right|+\left|7-x\right|+\left|x-5\right|+\left|6-x\right|\ge\left|x-4+7-x\right|+\left|x-5+6-x\right|=\left|3\right|+\left|1\right|=3+1=4.\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)\left(7-x\right)\ge0\\\left(x-5\right)\left(6-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow}5\le x\le6}\)(vì với mọi x nằm giữa 5 và 6 thì cũng nằm giữa 4 và 7).
Vậy GTNN của B bằng 4 khi \(5\le x\le6.\)
a;\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
Ta có +) \(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)
+)\(\left|x-2\right|\ge0\)Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)
\(\Rightarrow A_{min}=2\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow x=2}\)
b;\(B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|6-x\right|+\left|7-x\right|\)
Ta có +) \(\left|x-4\right|+\left|7-x\right|\ge\left|x-4+7-x\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)\left(7-x\right)\ge0\Leftrightarrow4\le x\le7\)
+) \(\left|x-5\right|+\left|6-x\right|\ge\left|x-5+6-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(6-x\right)\ge0\Leftrightarrow5\le x\le6\)
\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\ge4\)
\(\Rightarrow B_{min}=4\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow5\le x\le6}\)
(x-1)(x+2)(x+3)(x+6)
= (x-1)(x+6)(x+2)(x+3)
= (x.x + 5.x - 6)(x.x + 5.x + 6)
đặt x.x + 5.x = t
=> (t -6)(t+6)
= t.t - 36
ta có:
t.t >= 0
suy ra t.t - 36 >= -36
vậy min = -36
dấu "=" xảy ra chỉ khi t.t = 0
chỉ khi x.x + 5.x = 0
chỉ khi x=0 hoặc x=-5
MÌnh trả lời đầu tiên nhé