K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

S=m^2-16m+36/(m^2+4m+4)=m^2+4m+4-20m-40+72/m^2+4m+4

=((m+2)^2-20(m+2)+72)/(m+2)^2=1-20/(m+2)+72/(m+2)^2.

Đặt 1/m+2=x;S viết lại:S=72x^2-20x+1.Sau đó có GTNN của S là-7/18.Rồi tự tìm m nhé bn.

1 tháng 6 2019

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)\(=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{\left(x+y\right)^2}{2xy}\)

Áp dụng BĐT Cauchy-Schwar dạng phân thức:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\left(x+y\right)^2.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}=4\)(1)

Mặt khác, với \(x,y>0\): \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{\left(x+y\right)^2}{2xy}\ge2\)(2)

Từ (1) và (2) \(\Rightarrow S\ge6\)

\(''=''\Leftrightarrow x=y\)

28 tháng 8 2020

Bài làm:

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)

Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)

Thay vào ta tính được:

\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)

\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)

Đánh máy xong hết lại bấm hủy-.-

15 tháng 10 2018

tham số là gì ??????????????????????

1 tháng 7 2017

AM-GM thôi :))

\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)

Áp dụng BĐT AM-GM:

\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)

\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)

\(\Rightarrow VT\ge3+2+1=6\)

Dấu = xảy ra khi x=y

đề sai cmnr

13 tháng 12 2018

Sai rồi chắc chắn luôn vì:

nếu a,b>0 thì a+b\(\ge\)2,

mà đề lại cho a+b=1.

Nên đề đúng có thể là: cho a,b\(\ne\)0 và a+b=1 tìm GTTĐ của ....(phần sau chắc đúng rồi)

22 tháng 3 2017

\(M=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)

\(M=\left(1-2xy\right)+\dfrac{1-2xy}{\left(xy\right)^2}+4=\dfrac{1}{\left(xy\right)^2}-\dfrac{2}{xy}-2xy+5\\ \)đặt 1/xy= t \(\left(x+y\right)=1\Rightarrow xy\le\dfrac{1}{4}\Rightarrow t\ge4\)

\(M=t^2-2t-\dfrac{2}{t}+5\)

khi t > 1 hiển nhiên M luôn tăng khi t tăng => \(Mmin=M\left(4\right)=4.4-2.4-\dfrac{2}{4}+5=\dfrac{25}{2}\)

Đẳng thức khi t=4 => xy=1/4 => x=y=1/2

27 tháng 3 2020

Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?

NV
28 tháng 4 2019

\(S=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{xy}\right)=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{4}{4xy}\right)\)

\(S\ge\left(x+y\right)^2\frac{\left(1+2\right)^2}{x^2+y^2+4xy}=\frac{9\left(x+y\right)^2}{\left(x+y\right)^2+2xy}\ge\frac{9\left(x+y\right)^2}{\left(x+y\right)^2+\frac{\left(x+y\right)^2}{2}}=6\)

\(\Rightarrow S_{min}=6\) khi \(x=y\)