\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)\(=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{\left(x+y\right)^2}{2xy}\)

Áp dụng BĐT Cauchy-Schwar dạng phân thức:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\left(x+y\right)^2.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}=4\)(1)

Mặt khác, với \(x,y>0\): \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{\left(x+y\right)^2}{2xy}\ge2\)(2)

Từ (1) và (2) \(\Rightarrow S\ge6\)

\(''=''\Leftrightarrow x=y\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

27 tháng 7 2019

\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)

Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)

Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)