Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
ta có \(A=x^2+y^2+9-2xy-6x+6y+x^2-4x+4+2004\)
\(=\left(x-y-3\right)^2+\left(x-2\right)^2+2004\)
vì \(\left(x-y-3\right)^2+\left(x-2\right)^2\ge0\)
=> \(A\ge2004\)
dấu = xảy ra <=> x=2 và y=-1
A=(x2+2.x2.4+42)+4=(x+4)2+4 =>gtnn của A là 4 tại x=-4
câu dưới tương tự nhưng đặt nhân tử chung là 2 ra ngoài nha
A=x2+8x+20
=x2+8x+16+4
=(x+4)2+4\(\ge\)0+4=4
Dấu = khi x+4=0 <=>x=-4
Vậy Amin=4 khi x=-4
B=2x2+10x+20
\(=2\left(x^2+\frac{10x}{2}+10\right)\)
\(=2\left(x^2+\frac{5x}{2}+\frac{5x}{2}+\frac{25}{4}\right)+\frac{15}{2}\)
\(=2\left(x+\frac{5}{2}\right)^2+\frac{15}{2}\ge0+\frac{15}{2}=\frac{15}{2}\)
Dấu = khi x+5/2=0 <=>x=-5/2
Vậy Bmin=15/2 khi x=-5/2
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y^2\right)+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
" = " \(\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
\(\Rightarrow A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!
a) \(=\left(9x^2+2.3.\frac{5}{3}x+\frac{25}{9}\right)-\frac{34}{9}=\left(3x+\frac{5}{3}\right)^2-\frac{34}{9}\ge-\frac{34}{9}\Rightarrow Min=-\frac{34}{9}\Leftrightarrow x=-\frac{5}{9}\)
b) \(=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\Rightarrow Min=-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
a) \(A=\left(x^2-10x+25\right)\)\(-28\)
\(A=\left(x-5\right)^2-28\)\(>=\)-28
MinA = -28 <=> x-5=0 <=> x=5
b)\(B=-\left(x^2+2x+1\right)+6\)
\(B=-\left(x+1\right)^2+6\)\(< =\)6
MaxB = 6 <=> x+1=0 <=> x=-1
c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)
\(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)
MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)
d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)
\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)
MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)
Đúng thì nhớ tích cho minh nha
\(P=2x^2-10x+13=2\left(x^2-5x+\frac{25}{4}\right)+\frac{1}{2}\)
\(=2\left(x-\frac{5}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow x=\frac{5}{2}\)
\(P=2x^2-10x+13\)
\(P=2\left(x^2-5x+\frac{13}{2}\right)\)
\(P=2\left[\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{1}{4}\right]\)
\(P=2\left[\left(x-\frac{5}{2}\right)^2-\frac{1}{4}\right]\)
\(P=2\left(x-\frac{5}{2}\right)^2-\frac{1}{2}\ge\frac{1}{2}\)
\(\Rightarrow Pmin=\frac{-1}{2}\Leftrightarrow x=\frac{5}{2}\)