K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LC
17 tháng 5 2017
a, tự lm......
P=x2 / x-1
b, P<1
=> x2/x-1 <1
<=>x2/x-1 -1 <0
<=>x2-x+1 / x-1<0
Vi x2-x+1= (x -1/2 )2+3/4 >0
=> Để P<1
x-1 <0
x <1
c, x2/x-1 = x2-1+1/x-1
= x+1 +1/x-1
= 2 +(x-1) + 1/x-1
Áp dụng BDT Cô si ta có :
x-1 + 1/x-1 >hoặc = 2
=> P>= 3
Đầu = xảy ra <=> x=2( x >1)
Vay......
5 tháng 8 2017
làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4
KN
4 tháng 10 2020
Ta có: \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right)\Leftrightarrow\frac{x^2}{x-1}\ge4\)
Đẳng thức xảy ra khi x = 2
PN
0
Ta có:
\(P=\frac{x^2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}\)
Áp dụng BĐT AM-GM ta có:
\(P=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+2=4\)
Dấu "=" xảy ra tại x=2
Vậy \(P_{min}=2\Leftrightarrow x=2\)