Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự lm......
P=x2 / x-1
b, P<1
=> x2/x-1 <1
<=>x2/x-1 -1 <0
<=>x2-x+1 / x-1<0
Vi x2-x+1= (x -1/2 )2+3/4 >0
=> Để P<1
x-1 <0
x <1
c, x2/x-1 = x2-1+1/x-1
= x+1 +1/x-1
= 2 +(x-1) + 1/x-1
Áp dụng BDT Cô si ta có :
x-1 + 1/x-1 >hoặc = 2
=> P>= 3
Đầu = xảy ra <=> x=2( x >1)
Vay......
làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4
Ta có:
\(P=\frac{x^2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}\)
Áp dụng BĐT AM-GM ta có:
\(P=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+2=4\)
Dấu "=" xảy ra tại x=2
Vậy \(P_{min}=2\Leftrightarrow x=2\)
a.ĐKXĐ \(x\ne0,x\ne1\),\(x\ne-1\)
B=\(\frac{4}{\left(x-1\right)^2}-\frac{x^2-1}{x^3-x}.\frac{x^3+x}{\left(x-1\right)^2}\)=\(\frac{4}{\left(x-1\right)^2}-\frac{x.\left(x^2+1\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x-1\right)^2}\)=\(\frac{4}{\left(x-1\right)^2}-\frac{x^2+1}{\left(x-1\right)^2}\)
=\(\frac{3-x^2}{\left(x-1\right)^2}\)
b.TH1 x=3\(\Rightarrow\)B=\(\frac{3-3^2}{2^2}=\frac{-3}{2}\)
TH2 x=-1\(\Rightarrow\)B=\(\frac{3-\left(-1\right)^2}{4}=\frac{1}{2}\)
c.B=-1\(\Leftrightarrow\frac{3-x^2}{\left(x-1\right)^2}=-1\)\(\Leftrightarrow x^2-3=x^2-2x+1\)\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
d.B+2=\(\frac{3-x^2}{\left(x-1\right)^2}+2=\frac{x^2-4x+5}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2+1}{\left(x-1\right)^2}\ge0\)với mọi x\(\Rightarrow B\)>-2
\(ĐKXĐ:x\ne0;x\ne\pm1\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left[\frac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x^2-1+x+2-x^2}{x^2-x}\right)=\frac{x^2+x}{x^2-2x+1}:\frac{x+1}{x^2-x}\)
\(=\frac{x^2+x}{x^2-2x+1}.\frac{x^2-x}{x+1}=\frac{x^2\left(x^2-1\right)}{\left(x^2-1\right)\left(x-1\right)}=\frac{x^2}{x-1}\)
Khi \(x>1\) thì \(x-1>0\)
\(P=\frac{x^2}{x-1}=\frac{x^2-4x+4+4x-4}{x-1}=\frac{\left(x-2\right)^2}{x-1}+4\ge4\)
\("="\Leftrightarrow x=2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right)\Leftrightarrow\frac{x^2}{x-1}\ge4\)
Đẳng thức xảy ra khi x = 2