Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??
a: Khi m=-5 thì y=2(-5+1)x-(-5)+4
=>y=-8x+9
PTHĐGĐ là:
x^2+8x-9=0
=>(x+9)(x-1)=0
=>x=1 hoặc x=-9
=>y=1 hoặc y=81
b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)
\(=\sqrt{4m^2+8m+4-4m+16}\)
\(=\sqrt{4m^2+4m+20}\)
\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)
Dấu = xảy ra khi m=-1/2
Max nè : \(\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1+\frac{-\left(m-2\right)^2}{m^2+2}\le1\)
Min nhé: \(\frac{2m+1}{m^2+2}=\frac{4m+2}{2m^2+4}=\frac{-m^2-2+m^2+4m+4}{2\left(m^2+2\right)}\ge-\frac{1}{2}\)
Dấu bằng xảy ra : Max m=2, Min m =-2
Xét \(\Delta=\left(m^2+m+1\right)^2+4\left(m^2-m+1\right)>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m^2+m+1}{m^2-m+1}\\x_1x_2=\frac{-1}{m^2-m+1}\end{cases}}\)
a, \(P=\frac{-1}{m^2-m+1}=\frac{-1}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{-1}{\frac{3}{4}}=\frac{-4}{3}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
b,Tìm GTNN : lấy S trừ 2
\(A=\frac{m^2+7m+14}{\left(m+2\right)^2}\Rightarrow A\left(m+2\right)^2=m^2+7m+14\)
\(\Leftrightarrow\left(A-1\right)m^2+\left(4A-7\right)m+4A-14=0\)
- \(A-1=0\Leftrightarrow A=1\): \(m=\frac{-10}{3}\).
- \(A-1\ne0\): \(\Delta=\left(4A-7\right)^2-4\left(4A-14\right)\left(A-1\right)=16A-7\)
để phương trình có nghiệm thì \(\Delta\ge0\Leftrightarrow A\ge\frac{7}{16}\).
Vậy \(minA=\frac{7}{16}\).