Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)
\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\)
Từ đó ta có đồ thị hàm số như sau:
Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):
- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)
- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)
- Vô nghiệm khi \(m< \dfrac{3}{2}\)
Hàm xác định trên \(\left[0;8\right]\) khi và chỉ khi với mọi \(x\in\left[0;8\right]\) ta có:
\(x^2+4x-8+m\ge0\)
\(\Leftrightarrow m\ge-x^2-4x+8\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;8\right]}\left(-x^2-4x+8\right)\)
Xét hàm \(f\left(x\right)=-x^2-4x+8\) trên \(\left[0;8\right]\)
\(-\dfrac{b}{2a}=-2< 0\Rightarrow\) hàm nghịch biến trên \(\left[0;8\right]\)
\(\Rightarrow\max\limits_{\left[0;8\right]}f\left(x\right)=f\left(0\right)=8\)
\(\Rightarrow m\ge8\)
Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)
\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)
\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)
\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)
\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)
a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)
Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)
Tập xác định \(D = \left( {1; + \infty } \right)\)
\(\sqrt{x^2-4x+5}=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\forall x\)
=>\(y=\dfrac{1}{\sqrt{x^2-4x+5}}< =\dfrac{1}{1}=1\forall x\)
Vậy: TGT là \(T=(-\infty;1]\)
Lời giải:
Áp dụng BĐT Mincopxky:
\(y=\sqrt{x^2+4x+8}+\sqrt{x^2-4x+8}=\sqrt{(x+2)^2+4}+\sqrt{(x-2)^2+4}\)
\(=\sqrt{(x+2)^2+2^2}+\sqrt{(2-x)^2+2^2}\geq \sqrt{(x+2+2-x)^2+(2+2)^2}\)
\(=\sqrt{32}=4\sqrt{2}\)
Vậy $y_{\min}=4\sqrt{2}$ khi $x=0$