Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
\(f\left(x\right)=\left|x-1\right|+\left|4-x\right|+2\left(\left|x-2\right|+\left|4-x\right|\right)+\left|x-3\right|+\left|4-x\right|+2\left|x-3\right|\)
\(f\left(x\right)\ge\left|x-1+4-x\right|+2\left|x-2+4-x\right|+\left|x-3+4-x\right|+2\left|x-3\right|\)
\(f\left(x\right)\ge3+4+1+2\left|x-3\right|=8+2\left|x-3\right|\ge8\)
\(\Rightarrow f\left(x\right)_{min}=8\) khi \(x=3\)
chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm
vì vậy mình sẽ ko cho bạn
Vì (x−1)2 ≥ 0 ∀ x
(x−3)4 ≥ 0 ∀ x
6(x−1)2(x−2)2 ≥ 0 ∀ x
=> (x−1)2+(x−3)4+6(x−1)2(x−2)2 ≥ 0 ∀ x
=>A≥ 0 ∀ x
=>Amin=0. Dấu "=" xảy ra khi và chỉ khi :
(x−1)2=0⇔x=1 và (x−3)4=0 ⇔ x=3 và 6(x−1)2(x−2)2⇔ x=1 hoặc x=2
Vì x chỉ có 1 giá trị duy nhất trong biểu thức nên x = ∅.
Đặt \(x-2=a\Rightarrow\left\{{}\begin{matrix}x-1=a+1\\x-3=a-1\end{matrix}\right.\)
\(A=\left(a+1\right)^4+\left(a-1\right)^4+6\left(a+1\right)^2a^2\)
\(A=a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1+6a^2\left(a-1\right)^2\)
\(A=2a^4+12a^2+6a^2\left(a-1\right)^2+2\ge2\)
\(\Rightarrow A_{min}=2\) khi \(a=0\Leftrightarrow x=2\)
Giấ trị nhỏ nhất là 8
GTNN = 8 đạt khi t=0\Leftrightarrow x=2t=0⇔x=2