Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
Bài này tìm min chứ max có đâu mà tìm
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(=8x^4-64x^3+192x^2-256x+136\)
\(=\left(8x^4-64x^3+128x^2\right)+\left(64x^2-256x\right)+136\)
\(=8\left(x^2-4x\right)^2+64\left(x^2-4x\right)+136\)
\(=8\left(x-2\right)^4+8\ge8\)
Dấu = xảy ra khi \(x=2\)
chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm
vì vậy mình sẽ ko cho bạn
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
a/ Ta có
\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)
Ta lại có
\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)
\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)
Áp dụng vào bài toán ta được
\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)
b/
\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)
\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)
\(=\frac{1}{3}\)
Dấu = xảy ra khi x = y
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
Vì (x−1)2 ≥ 0 ∀ x
(x−3)4 ≥ 0 ∀ x
6(x−1)2(x−2)2 ≥ 0 ∀ x
=> (x−1)2+(x−3)4+6(x−1)2(x−2)2 ≥ 0 ∀ x
=>A≥ 0 ∀ x
=>Amin=0. Dấu "=" xảy ra khi và chỉ khi :
(x−1)2=0⇔x=1 và (x−3)4=0 ⇔ x=3 và 6(x−1)2(x−2)2⇔ x=1 hoặc x=2
Vì x chỉ có 1 giá trị duy nhất trong biểu thức nên x = ∅.
Đặt \(x-2=a\Rightarrow\left\{{}\begin{matrix}x-1=a+1\\x-3=a-1\end{matrix}\right.\)
\(A=\left(a+1\right)^4+\left(a-1\right)^4+6\left(a+1\right)^2a^2\)
\(A=a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1+6a^2\left(a-1\right)^2\)
\(A=2a^4+12a^2+6a^2\left(a-1\right)^2+2\ge2\)
\(\Rightarrow A_{min}=2\) khi \(a=0\Leftrightarrow x=2\)