Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+y^2+2.3.y+9-9+10\)
\(M=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3.y+9\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Chọn mình nha cảm ơn chúc bạn học tốt
a)\(A=\left(x-5\right)^2\ge0\)
\(\Rightarrow Min=0\)dấu \(=\)xảy ra khi \(x=5\)
a) \(A=x^2-10x+25\)
\(A=\left(x^2-10x+25\right)+0\)
\(A=\left(x-5\right)^2+0\)
Mà \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi : \(x-5=0\Leftrightarrow x=5\)
Vậy ...
\(M=x^2+y^2-x+6y+10\)
\(M=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9+1-\frac{1}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+1-\frac{1}{4}\)
\(M_{min}=1-\frac{1}{4}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2},y=-3\)
P/s tham khảo nha
\(x^2+y^2-x+6y+10\)
=\(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
=\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(y+3=0\Rightarrow y=-3\)
Vậy MinM = \(\frac{3}{4}\)\(\Leftrightarrow\)\(x=\frac{1}{2}\)và \(y=-3\)
\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
a) Ta có: Q = 2x2 - 6x = 2x2 - 6x + 9/2 - 9/2 = 2(x2 - 3x + 9/4) - 9/2 = 2(x - 3/2)2 - 9/2
Ta luôn có : (x - 3/2)2 \(\ge\)0 \(\forall\)x --> 2(x - 3/2)2 \(\ge\)0 \(\forall\)x
=> 2(x - 3/2)2 - 9/2 \(\ge\)-9/2 \(\forall\)x
hay Q \(\ge\)-9/2 \(\forall\)x
Dấu "=" xảy ra <=> (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2
Vậy Qmin = -9/2 tại x = 3/2
b) Ta có:
M = x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4 = (x - 1/2)2 + (y + 3)2 + 3/4
Ta luôn có: (x - 1/2)2 \(\ge\)0 \(\forall\)x
(y + 3)2 \(\ge\) 0 \(\forall\)y
=> (x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\) 3/4 \(\forall\)x,y
hay M \(\ge\)3/4 \(\forall\)x , y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy Mmin = 3/4 tại x = 1/2 và y = -3
Ta có:
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra <=> x = 1/2 ; y = -3
=> MinM = 3/4 <=> x = 1/2 ; y = -3