Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do l2x-22I \(\ge0\)
l12-xl\(\ge0\)
2lx-13l\(\ge0\)
Nên D=l2x-22l+l12-xl+2lx-13l\(\ge0\)
Min D = 0\(\Leftrightarrow\hept{\begin{cases}2x-22=0\\12-x=0\\x-13=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\x=12\\x=13\end{cases}}}\)
Vậy ko có gtri x thỏa mãn khi Min D =0
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12
\(D=\left|2x-22\right|+\left|12-x\right|+2\left|x-13\right|\)
\(D=\left|2x-22\right|+\left|12-x\right|+2\left|13-x\right|\)
+ Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a,b\)
Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|2x-22\right|+2\left|13-x\right|\ge\left|2x-22+26-2x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-22\right)\left(13-x\right)\ge0\)
\(\Leftrightarrow11\le x\le13\) (1)
+ \(\left|12-x\right|\ge0\forall x\). Dấu "=" xảy ra \(\Leftrightarrow x=12\) (2)
+ Từ (1) và (2) => \(D\ge4\) . Dấu "=" xảy ra \(\Leftrightarrow x=12\)
Vậy \(Min\) D = 4 \(\Leftrightarrow x=12\)
a: 2x-3/2+3/4=-4
=>2x-3/4=-4
=>2x=-13/4
hay x=-13/8
b: \(\left(-\dfrac{2}{3}x-\dfrac{3}{5}\right)\cdot\left(\dfrac{-3}{2}-\dfrac{10}{3}\right)=\dfrac{2}{5}\)
\(\Leftrightarrow-\dfrac{2}{3}x-\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{-29}{6}=\dfrac{-2}{5}\cdot\dfrac{6}{29}=\dfrac{-12}{145}\)
=>2/3x+3/5=12/145
=>2/3x=-15/29
hay x=-45/58
c: \(\dfrac{x}{2}-\left(\dfrac{3}{5}x-\dfrac{13}{5}\right)=-\left(\dfrac{7}{10}x+\dfrac{7}{5}\right)\)
=>1/2x-3/5x+13/5=-7/10x-7/5
=>-1/10x+7/10x=-7/5-13/5
=>3/5x=-2
hay x=-2:3/5=-10/3
\(D=\left|2x-22\right|+\left|12-x\right|+2\left|x-13\right|=\left|2x-22\right|+\left|2x-26\right|+\left|12-x\right|\)
Ta có: \(\left|2x-22\right|+\left|2x-26\right|=\left|2x-22\right|+\left|26-2x\right|\ge\left|2x-22+26-2x\right|=4\) (1)
Dấu "=" xảy ra khi: \(\left(2x-22\right)\left(26-2x\right)\ge0\)
\(\Rightarrow\left(2x-22\right)\left(2x-26\right)\le0\)
\(\Rightarrow\hept{\begin{cases}2x-22\ge0\\2x-26\le0\end{cases}\Rightarrow}22\le2x\le26\Rightarrow11\le x\le13\)
\(\left|12-x\right|\ge0\)(2). Dấu "=" xảy ra khi x = 12
Từ (1) và (2), ta được: \(D=\left|2x-22\right|+\left|2x-26\right|+\left|12-x\right|\ge4+0=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}11\le x\le13\\x=12\end{cases}\Rightarrow x=12}\)
Vậy GTNN của D là 4 tại x = 12