K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Ta có 1> 0 => để C có GTNN thì 3-2x lớn nhất => 3-2x là số nguyên âm lớn nhất

=> 3-2x=-1 => 2x=4 => x=2. Vậy x=2 thuộc Z khi đó C=-1

4 tháng 6 2016

Ta có: Với x là số cố định => để A có GTNN thì x+3 có giá trị lớn nhất

=> x+3 là số nguyên âm lớn nhất

=>x+3=-1

=>x=-1-3

=>x=-4

Vậy x=-4 thì A có GTNN

4 tháng 6 2016

\(A=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}.\)( x thuộc Z và x # -3 )

A đạt giá trị nhỏ nhất khi \(\frac{3}{x+3}\)đạt giá trị lớn nhất 

Với x thuộc Z và x # -3 ta có : \(\frac{3}{x+3}\le\frac{3}{-2+3}=3\)=> giá trị lớn nhất của \(\frac{3}{x+3}\)= 3 khi x = -2 

Vậy GTNN A = 1 - 3 = - 2 Khi x = -2 

11 tháng 6 2016

ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)

a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)

    \(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)

     \(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)

       \(=\frac{x^2+x+1}{x}\)

b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)

                          Vậy R > 3

3 tháng 9 2016

1/

a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm

b/ Đề sai , giả sử với a = 3

c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)

d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)

 

3 tháng 9 2016

2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

BT đạt giá trị nhỏ nhất bằng 2 tại x = 3

b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

BT đạt giá trị lớn nhất bằng -2 tại x = 3

4 tháng 6 2016

\(A=\frac{x}{x+3}=1-\frac{3}{x+3}\)

Để A đật GTNN <=> \(\frac{3}{x+3}\)đạt GTLN <=> \(x+3\)đạt GTNN <=> \(x=0\)

Với x=0 thì Giá trị Của A là 0

4 tháng 6 2016

Ta có : \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}\)\(=1-\frac{3}{x+3}\)

=> Để A có GTNN thì \(\frac{3}{x+3}\) có GTLN

Ta có: 3>0 và  \(\frac{3}{x+3}\) có GTLN => x+3 nhỏ nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1 => x=1-3=-2

Vậy x=-2 hì A có GTNN.

21 tháng 5 2020

Rút gọn:

\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)

\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)

\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)

\(M=\frac{x+1}{3x\left(x-1\right)}\)