Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $9x^2+6xy+y^2$
$=(3x)^2+2.3xy+y^2$
$=(3x+y)^2$
b) $6x-9-x^2$
$=-(x^2-6x+9)$
$=-(x-3)^2$
c) $x^2+4y^2+4xy$
$=x^2+(2y)^2+4xy$
$=(x+2y)^2$
d) $(x-2y)^2-(x+2y)^2$
$=(x-2y-x-2y)(x-2y+x+2y)$
$=-4y.2x=-8xy$
a, \(9x^2+6xy+y^2\)
\(=9x^2+3xy+3xy+y^2\)
\(=3x\left(3x+y\right)+y\left(3x+y\right)\)
\(=\left(3x+y\right)^2\)
b, \(6x-9-x^2\)
\(=-\left(x^2-6x+9\right)=-\left(x^2-3x-3x+9\right)\)
\(=-\left(x-3\right)^2\)
c, \(x^2+4y^2+4xy\)
\(=x^2+2xy+2xy+4y^2\)
\(=x\left(x+2y\right)+2y\left(x+2y\right)\)
\(=\left(x+2y\right)^2\)
d, \(\left(x-2y\right)^2-\left(x+2y\right)^2\)
\(=\left(x-2y-x-2y\right)\left(x-2y+x+2y\right)\)
\(=-8xy\)
Chúc bạn học tốt!!!
a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)
=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)
\(=3x^2y-2xy^2-5xy\)
b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)
=\(\dfrac{2y+5y}{x-2}\)
=\(\dfrac{7y}{x-2}\)
c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)
\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)
=\(\dfrac{x\left(y-3x\right)}{3x-y}\)
=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)
=-x
d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)
=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)
=\(\dfrac{1}{6}\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
học tốt
Tham khảo nhé :
x² + y² + xy - 2x - 2y + 2
= (x² - 2x + 1) + (xy - y) + y²/4 + 3y²/4 - y + 1/3 + 2/3
= [ (x - 1)² + 2.(x - 1).y/2 + y²/4 ] + 3.[ (y/2)² - 2.y/2.1/3 + 1/9 ] + 2/3
= (x - 1 + y/2)² + 3(y/2 - 1/3)² + 2/3
có:
(x - 1 + y/2)² ≥ 0
3(y/2 - 1/3)² ≥ 0
--> (x - 1 + y/2)² + 3(y/2 - 1/3)² + 2/3 > 0
hay x² + y² + xy - 2x - 2y + 2 > 0 --> đ.p.c.m
K ĐÚNG NHA GHI NHẦM!!!!