Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
- Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)
\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
ta có ĐK là x>=0
ta có \(4\sqrt{x}\ge0;x+2\sqrt{x}+1>0\Rightarrow\) \(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\ge0\)
dấu = xảy ra <=> x= 0,
Bấm nhầm nút gửi
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)
\(\Rightarrow A\ge-2\sqrt{5}\) (1)
Bình phương 2 vế ta được
\(5x^2-4Ax+A^2-5=0\)
Để phương trình theo x có nghiệm thì
\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)
\(\Leftrightarrow100-16A^2\ge0\)
\(\Leftrightarrow A\le\frac{5}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)
\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)
Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)
\(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)
\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)
Vậy MaxA=1/8 khi x=8
min trước nhé max mình đang nghĩ
ta có
ĐKXĐ \(x>=4\)
vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)
=> \(\frac{\sqrt{x-4}}{2x}>=0\)
dấu = xảy ra <=> x=4
\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{1000.1000}=300\)
dấu = khi x=10
gọi biểu thức ban đầu là B
xét biểu thức phụ
Q=3x/(1-x)+(4-4x)/x
do 0<x<1 nên 3x/(x-1)>0 và (4-4x)/x>0
áp dụng bđt cosy cho 2 số trên ta được :
3x/(1-x)+(4-4x)/x ≥2√(3x/(1-x)*(4-4x)/x)=2√12=4√3
dấu = xảy ra khi và chỉ khi 3x/(1-x)=(4-4x)/x và 0<x<1
suy ra 3x/(1-x)=4*(1-x)/x
suy ra 4*(1-x)^2=3x^2
suy ra |1-x|=√(3x^2/4)
suy ra 1-x=x√3/2
suy ra x=-2√3+4
lại có B-Q=3/(1-x)+4/x-3x/(1-x)-(4-4x)/x=7(bạn tự giải ra giùm mình nhé)
suy ra gtnn B=7+Q=7+4√3
dấu bằng xảy ra khi x=-2√3+4
Xét biểu thức phụ B=3x1−x+4−4xxB=3x1−x+4−4xx
Vì 0<x<1→⎧⎪ ⎪⎨⎪ ⎪⎩3x1−x>04−4xx>00<x<1→{3x1−x>04−4xx>0
AD BĐT Cô-si cho 2 số dương ta được:
B=3x1−x+4−4xx≥2√3x1−x.4−4xx=2√12=4√3B=3x1−x+4−4xx≥23x1−x.4−4xx=212=43
Dấu "=" xảy ra ↔⎧⎨⎩3x1−x=4−4xx0<x<1↔{3x1−x=4−4xx0<x<1
↔{4(1−x)2=3x20<x<1↔{4(1−x)2=3x20<x<1
↔⎧⎪⎨⎪⎩|1−x|=√3x240<x<1↔{|1−x|=3x240<x<1
↔⎧⎪⎨⎪⎩1−x=x√320<x<1↔{1−x=x320<x<1
↔x=−2√3+4↔x=−23+4
Lại có:Q−B=31−x+4x−3x1−x−4−4xx=7Q−B=31−x+4x−3x1−x−4−4xx=7
→QMIN=7+BMIN=7+4√3→QMIN=7+BMIN=7+43
Dấu "=" xảy ra ↔x=−2√3+4↔x=−23+4
\(B=7-\sqrt{x^2-6x+11}=7-\sqrt{\left(x-3\right)^2+2}\)
Vì \(\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\Leftrightarrow B\le7-2=5\)
Vậy \(B_{max}=5\Leftrightarrow x=3\)