Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do\(1\le a\le b\le c\le d\le4\)
\(\Rightarrow M=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b}{4}\ge2\sqrt{\frac{1}{b}.\frac{b}{4}}=1\) (AM-GM)
Dấu "=" xảy ra \(\Leftrightarrow a=1;b=c=\frac{1}{2};d=4\)
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Giair các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)
\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)
Chúc bạn học tốt ~
\(A=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+b^2+\frac{b^2+a^2}{a^2b^2}\ge0\)
\(MinA=0\Leftrightarrow\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
bạn lm sai rồi