Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow\text{MIN}_{-36}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
\(\left|2x-6\right|=\hept{\begin{cases}2x-6\left(khi2x-6\ge0\right)\\6-2x\left(khi2x-6< 0\right)\end{cases}}\)
\(\left|2x-6\right|=\hept{\begin{cases}2x-6khix\ge3\\6-2xkhix< 3\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khi2x-2\ge0\\2-2xkhi2x-2< 0\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khix\ge1\\2-2xkhix< 1\end{cases}}\)
KHI \(x< 1\):
\(6-2x+2-2x=6\)
\(\Rightarrow-4x+8=6\)
\(\Rightarrow4x=2\Rightarrow x=\frac{1}{2}\)(THỎA MÃN)
KHI \(1\le x< 3\)
\(6-2x+2x-2=6\)
\(\Rightarrow4=6\)9VÔ NGHIỆM)
KHI: \(x\ge3\)
\(\Rightarrow2x-6+2x-2=6\)
\(\Rightarrow4x=14\Rightarrow x=\frac{7}{2}\)(THỎA MÃN)
Ta có :
A = | x + 1 | + | x - 6 |
A = | x + 1 | + | 6 - x | \(\ge\)| x + 1 + 6 - x | = 7
\(\Rightarrow\)GTLN của A là 7 khi ( x + 1 ) . ( 6 - x ) \(\ge\)0 hay -1 \(\le\)x \(\le\)6
May cho bạn là Quản Lý chưa online