Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(A=2x+\frac{9}{x-1}\)
\(A=2x-2+\frac{9}{x-1}+2\)
\(A=2\left(x-1\right)+\frac{9}{x-1}+2\)
Áp dụng bđt Cauchy :
\(A\ge2\sqrt{\frac{2\cdot\left(x-1\right)\cdot9}{x-1}}+2=6\sqrt{2}+2\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-1\right)=\frac{9}{x-1}\Leftrightarrow x=\frac{2+3\sqrt{2}}{2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(S=\frac{1}{x}+\frac{1}{4y}+\frac{1}{16z}=\frac{1}{x}+\frac{\frac{1}{4}}{y}+\frac{\frac{1}{16}}{z}\ge\frac{\left(1+\frac{1}{2}+\frac{1}{4}\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\frac{16}{21}\\y=\frac{4}{21}\\z=\frac{1}{21}\end{cases}}\). Vậy GTNN của S = 49/16
\(l=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}=\dfrac{1^2}{x}+\dfrac{2^2}{y}+\dfrac{3^2}{z}\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=\dfrac{36}{1}=36\)
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{1}{2x}+2x\geq 2\)
\(\frac{9}{y}+y\geq 6\)
\( \frac{7}{3}(x+y)\geq \frac{7}{3}.\frac{7}{2}=\frac{49}{6}\)
Cộng theo vế các BĐT trên ta có:
\(P\geq \frac{97}{6} hay P_{\min}=\frac{97}{6} \)
Dấu "=" xảy ra khi
\((x,y)=(\frac{1}{2}, 3)\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y >= 7/2 ta có :
\(A=\frac{13}{3}x+\frac{10}{3}y+\frac{1}{2x}+\frac{9}{y}=\left(2x+\frac{1}{2x}\right)+\left(y+\frac{9}{y}\right)+\frac{7}{3}\left(x+y\right)\)
\(\ge2\sqrt{2x\cdot\frac{1}{2x}}+2\sqrt{y\cdot\frac{9}{y}}+\frac{7}{3}\cdot\frac{7}{2}=2+6+\frac{49}{6}=\frac{97}{6}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x,y>0\\2x=\frac{1}{2x};y=\frac{9}{y}\\x+y=\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=3\end{cases}}\)
nếu qua hạn nộp cô chưa chữa cho bn mình sẽ giúp :) giờ quá bận :)
tìm giá trị nhỏ nhất của biểu thức\(A=x \dfrac{9}{x-1} 3\) với x>1 - Hoc24
câu này sáng mình giúp bạn rồi mà