Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
a) \(4xy\le\left(x+y\right)^2=1\)
=> \(xy\le4\)
Dấu "=" xảy ra <=> x = y = 1/2
b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)
Dấu "=" xảy ra <=> x = y = 1/2
a)x2+y2=2 =>(x+y)2-2xy=2<=>-2xy=2-(x+y)2 <=> xy=\(-\dfrac{2-\left(x+y\right)2}{2}\)
mà \(-\dfrac{2-\left(x+y\right)2}{2}< 1\)
=>xy <1
Ta có : \(A=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(A=4+\frac{x^2+y^2}{x^2y^2}+\frac{2.\left(x^2+y^2\right)}{xy}=4+\frac{4}{x^2y^2}+\frac{8}{xy}\)
\(A=4\left(\frac{1}{xy}+1\right)^2\)
Mặt khác : \(xy\le\frac{x^2+y^2}{2}=2\Rightarrow\frac{1}{xy}\ge\frac{1}{2}\)
\(\Rightarrow A\ge4\left(\frac{1}{2}+1\right)^2=9\)
Vậy Min A = 9 khi x = y = \(\sqrt{2}\)
\(A\ge\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{8\left(x+y+z\right)}+\frac{9}{8\left(x+y+z\right)}+\frac{27}{4\left(x+y+z\right)}\)
\(A\ge3\sqrt[3]{\frac{81\left(x+y+z\right)^2}{3.64\left(x+y+z\right)\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{27}{4}\)
\(A_{min}=\frac{27}{4}\) khi \(x=y=z=\frac{1}{2}\)
2.
a/ Áp dụgn hệ quả bđt cô si,ta có :
\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)
Vậy GTLN A =a^2/3 khi x= y =z =a/3
b/Áp dụng BĐT Cô-Si dạng Engel,ta có :
\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Vậy GTNN của B = a^2/2 khi x=y=z =a/3
\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
Cho x,y > 0. Tìm GTNN của:
a) x2 + y2 + \(\dfrac{1}{xy}\) với x + y = 2
b) x + y + \(\dfrac{1}{xy}\)
a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)
Vậy ...
b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)
\(\Leftrightarrow x^2y=y^2x=1\)
\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)
\(\Leftrightarrow x=y=1\)
Vậy ...
nếu qua hạn nộp cô chưa chữa cho bn mình sẽ giúp :) giờ quá bận :)