Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)
\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)
Để P đạt GTLN
=> Mẫu thức đạt GTNN
mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)
Thay x = -5/2 và y = 5/2 vào P
Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)
Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2
1) Ta có P = x2 + 2xy + 3y2 + 5y + 10
= (x2 + 2xy + y2) + (2y2 + 5y + 10)
= \(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)
= \(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)
Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
\(B=2x^2+y^2+2xy+6x+2y+2015\)
\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)
\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)
Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)
Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1
Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG
a)\(A=x^2-6x+15\)
\(\Leftrightarrow A=x^2-6x+9+6\)
\(\Leftrightarrow A=\left(x-3\right)^2+6\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)
Dấu = xảy ra khi x - 3 = 0 ; x = 3
Vậy Min A = 6 khi x=3
b)\(B=x^2+4x\)
\(\Leftrightarrow B=x^2+4x+4-4\)
\(\Leftrightarrow B=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\
Dấu = xảy ra khi x + 2 = 0 ; x = -2
Vậy Min B = -4 khi x =-2
A = (x^2-2xy+y^2)+(4y^2+y+1/16)+32079/16
= (x-y)^2+(2y+1/4)^2+32079/16 >= 32079/16
Dấu "=" xảy ra <=> x-y=0 và 2y+1/4 = 0 <=> x=y=-1/8
Vậy GTNN của A = 32079/16 <=> x=y=-1/8
Tk mk nha
Ta xó A=\(\left(x^2-2xy+y^2\right)+4y^2+y+\frac{1}{16}+\frac{32079}{16}=\left(x-y\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{32079}{16}\ge\frac{32079}{16}\)
dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\y=-\frac{1}{8}\end{cases}\Leftrightarrow x=y=-\frac{1}{8}}\)
^_^
\(k=x^2+2xy+y^2-2x-2y+1+2y+4y^2+2014=\left(x+y-1\right)^2+\left(2y+\frac{1}{2}\right)^2+2013,75\ge0+0+2013,75=2013,75\Rightarrow k_{min}=2013,75\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=\frac{-1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{4}\\y=\frac{-1}{4}\end{matrix}\right.\)