\(2x^2+2xy+5y^2-8x-22y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(P=3x^2+y^2-8x+2xy+16\)

\(P=\left(x^2+2xy+y^2\right)+\left(2x^2-8x+8\right)+8\)

\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\)

Vậy GTNN của P=8 <=> \(\orbr{\begin{cases}x+y=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}y=-2\\x=2\end{cases}}\)

8 tháng 12 2016

\(2x^2+2y^2-2xy-6y+21\)

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12y+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)

\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

Vậy GTNN là 30

8 tháng 12 2016

Cho mk sủa lại tí :

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15

7 tháng 8 2017

2) a) \(P=3x^2+y^2-8x+2xy+16\)

\(P=\left(x^2+2xy+y^2\right)+2\left(x^2-4x+4\right)+8\)

\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\forall x;y\)

\(\Rightarrow\) GTNN của P là 8 khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\) vậy GTNN của P là 8 khi \(x=2;y=-2\)

b) \(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\forall x;y\)

\(\Rightarrow\) GTNN của Q là 2013 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\) vậy GTNN của Q là 2013 khi \(x=y=2\)

c) \(M=2x^2+y^2-2xy-2x+2016\)

\(M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2015\)

\(M=\left(x-y\right)^2+\left(x-1\right)^2+2015\ge2015\forall x;y\)

\(\Rightarrow\) GTNN của M là 2015 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) vậy GTNN của M là 2015 khi \(x=y=1\)

7 tháng 8 2017

thanks bạn

26 tháng 7 2020

a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)

\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)

Dấu " = " xảy ra <=> x - 4 = 0 => x = 4

Vậy MMin = 2002 khi x = 4

b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)

\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2

Vậy NMin = 2010 khi x = 3/2

c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy PMin = 8063/4 khi x = 1/2

d) \(Q=x^2-2x+y^2+4y+2020\)

\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)

\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy QMin = 2015 khi x = 1 ; y = -2 

28 tháng 6 2016

Bạn ơi \(2x^2\) chứ ko phải\(x^2\)