\(A=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

\(A=\dfrac{3m^2-2m-1}{\left(m+1\right)^2}\)

\(=\dfrac{4m^2-\left(m^2+2m+1\right)}{m^2+2m+1}=\dfrac{4m^2}{\left(m+1\right)^2}-1\ge-1\)

Vậy \(Min_A=-1\Leftrightarrow m=0\)

2 tháng 9 2017

Bạn chịu khó nhìn hình nha! Mik lười bấm máy lắm!

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

9 tháng 4 2018

\(a)\) Ta có : 

\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng ) 

\(\Leftrightarrow\)\(3m-6+12m+4< 0\)

\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)

\(\Leftrightarrow\)\(15m-2< 0\)

\(\Leftrightarrow\)\(15m< 2\)

\(\Leftrightarrow\)\(m< \frac{2}{15}\)

Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(b)\) Ta có : 

\(\frac{m-4}{6m+9}>0\)

\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) ) 

\(\Leftrightarrow\)\(m>4\)

Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)

Chúc bạn học tốt ~ 

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

30 tháng 9 2019

Áp dụng BĐT AM - GM ta có ;

\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)

\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)

\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)

\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)

\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(=4+3\sqrt{2}\)

Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Chúc bạn học tốt !!!