Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Ta có :
\(A=\left|x-2\right|+\left|x+\frac{1}{2}\right|=\left|x-2\right|+\left|x-\frac{-1}{2}\right|=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\)
Áp dụng bất đẳng thức giá trị tuyệt đối ta có :
\(A=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\ge\left|x-2+\frac{-1}{2}-x\right|=\left|-2-\frac{1}{2}\right|=\left|\frac{-3}{2}\right|=\frac{3}{2}\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(\frac{-1}{2}-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2\ge0\\\frac{-1}{2}-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{-1}{2}\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2\le0\\\frac{-1}{2}-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{-1}{2}\end{cases}}}\)
\(\Rightarrow\)\(\frac{-1}{2}\le x\le2\)
Vậy \(A_{min}=\frac{3}{2}\) khi \(\frac{-1}{2}\le x\le2\)
Chúc bạn học tốt ~
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).
Vậy \(P_{Min}=6\) khi \(x=1.\)
Happy New year :)
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
\(Q=\frac{x^2+1}{x^2+6}=\frac{x^2+6-5}{x^2+6}=1-\frac{5}{x^2+6}\)
Ta có \(x^2\ge0\forall x\)
\(\Rightarrow x^2+6\ge6\forall x\)
\(\Rightarrow\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)
\(\Rightarrow-\frac{5}{x^2+6}\ge\frac{5}{6}\forall x\)
\(\Rightarrow1-\frac{5}{x^2+6}\ge\frac{1}{6}\forall x\)
Dấu "=" xảy ra khi x = 0
Q=\(\frac{x^2+1}{x^2+6}\)=1-\(\frac{5}{x^2+6}\)
có:\(x^2+6\)\(\ge\)6
\(\frac{5}{x^2+6}\le\frac{5}{6}\)
=>Q=1-\(\frac{5}{x^2+6}\)\(\ge1-\frac{5}{6}=\frac{1}{6}\)
=>Qmin+\(\frac{1}{6}\Leftrightarrow x^2=0\Rightarrow x=0\)