\(Q=\frac{x^2+1}{x^2+6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(Q=\frac{x^2+1}{x^2+6}=\frac{x^2+6-5}{x^2+6}=1-\frac{5}{x^2+6}\)

Ta có \(x^2\ge0\forall x\)

\(\Rightarrow x^2+6\ge6\forall x\)

\(\Rightarrow\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)

\(\Rightarrow-\frac{5}{x^2+6}\ge\frac{5}{6}\forall x\)

\(\Rightarrow1-\frac{5}{x^2+6}\ge\frac{1}{6}\forall x\)

Dấu "=" xảy ra khi x = 0

3 tháng 3 2020

Q=\(\frac{x^2+1}{x^2+6}\)=1-\(\frac{5}{x^2+6}\)

có:\(x^2+6\)\(\ge\)6

\(\frac{5}{x^2+6}\le\frac{5}{6}\)

=>Q=1-\(\frac{5}{x^2+6}\)\(\ge1-\frac{5}{6}=\frac{1}{6}\)

=>Qmin+\(\frac{1}{6}\Leftrightarrow x^2=0\Rightarrow x=0\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

5 tháng 9 2020

\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)

Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)

Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7

=> MinA = -12/293 <=> x = -4/7

\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)

Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)

=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24

19 tháng 5 2020

Đặt:P =  \(\frac{4-x}{x-2}=\frac{2+2-x}{x-2}=\frac{2}{x-2}-1\)

Ta có: P đạt giá trị lớn nhất khi và chỉ khi \(\frac{2}{x-2}\) đạt giá trị lớn nhất 

+) Nếu :  x - 2 < 0 => \(\frac{2}{x-2}< 0\)

+) Nếu x - 2> 0 => \(\frac{2}{x-2}>0\)

Nên \(\frac{2}{x-2}\)đạt giá trị lớn nhất khi x - 2 > 0  và x - 2 đạt giá trị bé nhất 

=> x - 2 = 1 hay x = 3  ( thỏa mãn x khác 2)

Tại x = 3 ta có: P = 2 - 1 = 1 

Vậy giá trị lớn nhất của biểu thức là P = 1 tại x = 3.

19 tháng 5 2020

cô ơi đề bảo tìm gtnn cô ạ :(

1 tháng 1 2017

Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).

Vậy \(P_{Min}=6\) khi \(x=1.\)

Happy New year :)

30 tháng 3 2018

Ta có : 

\(A=\left|x-2\right|+\left|x+\frac{1}{2}\right|=\left|x-2\right|+\left|x-\frac{-1}{2}\right|=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\)

Áp dụng bất đẳng thức giá trị tuyệt đối ta có : 

\(A=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\ge\left|x-2+\frac{-1}{2}-x\right|=\left|-2-\frac{1}{2}\right|=\left|\frac{-3}{2}\right|=\frac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(\frac{-1}{2}-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2\ge0\\\frac{-1}{2}-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2\le0\\\frac{-1}{2}-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(\frac{-1}{2}\le x\le2\)

Vậy \(A_{min}=\frac{3}{2}\) khi \(\frac{-1}{2}\le x\le2\)

Chúc bạn học tốt ~