Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2-2x^2|>=0
=>-2|2x^2-2|<=0
=>-2|2x^2-2|+1<=1
Dấu = xảy ra khi 2x^2-2=0
=>x^2=1
=>x=1 hoặc x=-1
Ta co : A(x2 + 1) = 3 - 4x
<=> Ax2 + 4x + A - 3 = 0
Để phuong trinh trên tồn tại no x thì:
delta' = 4 - A(A-3) = -A2 + 3A +4 >=0
<=> A2-3A-4 \(\le\)0
<=> (A+1)(A-4) \(\le\) 0
<=> -1 \(\le\) A \(\le\)4
Vay gia tri nho nhat la : A = -1 va gia tri nho nhat la : A = 4
Ta có
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2 Và Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1
Khi đó
M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1
Bậc của M ( x ) = - x 3 + x 2 + 4 x - 1 l à 3
Chọn đáp án C
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
ta có \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow E\ge17,5\)
dấu = xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0,75\\y=1,5\end{cases}}}\)
a) Vì \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7\right|\ge0\forall x,y\)
=> \(\left|4x-3\right|+\left|5y+7\right|+17,5\ge17,5\forall x\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{7}{5}\end{cases}}\)
Vậy GTNN là 17,5 khi x = 3/4,y = -7/5
b) \(2\left|3x-1\right|-4\)
Vì |3x - 1| \(\ge\)0 \(\forall\)x
=> 2|3x - 1| - 4 \(\ge\)-4\(\forall\)x
Dấu " = " xảy ra khi và chỉ khi |3x - 1| = 0 => x = 1/3
Vậy GTNN là -4 khi x = 1/3
c) Đây là GTLN mà ?
Vì \(\hept{\begin{cases}\left|5-2x\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5-2x\right|-\left|3y+12\right|\ge0\forall x,y\)
=> \(4-\left|5-2x\right|-\left|3y+12\right|\le4\forall x,y\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|5-2x\right|=0\\\left|3y+12\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-4\end{cases}}\)
Vậy GTLN là 4 khi x = 5/2,y = -4
+) Xét điều kiện bỏ dấu giá trị tuyệt đối của \(\left|x+5\right|\)
+) TH1 : Nếu \(x+5\ge0\)
\(\Rightarrow x\ge-5\)
\(\Rightarrow\left|x+5\right|=x+5\)
\(A=4.\left(x+5\right)+4x-1\)
\(A=8x+19\)
Vì \(x\ge-5\)
\(\Rightarrow8x\ge-40\)
\(\Rightarrow8x+19\ge-21\)
\(\Rightarrow A\ge-21\) ( * )
\(\Rightarrow\) Nếu \(x\ge-5\) thì \(A\ge-21\) ( * )
+) TH2 : Nếu \(x+5< 0\)
\(\Rightarrow x< -5\)
\(A=4.\left(-x-5\right)+4x-1\)
\(A=-4x-20+4x-1\)
\(A=-21\)
\(\Rightarrow\) Nếu \(x< -5\) thì \(A=-21\) ( ** )
Từ ( * ) ; ( ** )
\(\Rightarrow\) GTNN của \(A=-21\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(x< -5\)
Q = 2x2 + 4x + 7
2Q = 4x2 + 8x + 14
2Q = (2x)2 + 2.2x.2 + 22 + 10
2Q = (2x + 2)2 + 10 \(\ge10\)
=> Q \(\ge5\)
Vậy GTNN của Q = 5 tại x = -1