K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

\(M=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x\right)^2-10^2\)

\(=\left(x^2-7x\right)^2-100\ge-100\)

dấu = xảy ra khi x=0 hoặc x=7

vậy \(GTNN\) của M là -100 hoặc x=0;x=7

học tốt nhoa bạn 

24 tháng 9 2018

\(M=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-5x-2x+10\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

Đặt x2-7x=t

=>\(M=\left(t+10\right)\left(t-10\right)=t^2-100=\left(x^2-7x\right)^2-100\ge-100\)

Dấu "=" xảy ra khi x=0 hoặc x=7

Vậy MinA=-100 khi x=0 hoặc x=7

7 tháng 9 2015

A = x2+ 3x+ 7

=x+ 2*x*3/2+9/4 + 19/4

=(x+3/2)2 +19/4

ta có (x+3/2)2>0 nên (x+3/2)2+ 19/4>hoặc=19/4

=> AMin khi x+3/2=0

              =>x=-3/2

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

25 tháng 9 2018

Khó quá 

Chịu thoy

Nếu mk lm xng con nay thì sang năm vẫn chưa xng đôu

...army

25 tháng 9 2018

(x-2)(x-5)(x^2-7x-10) = (x^2-7x+10)(x^2-7x-10) = (x^2-7x)^2-100 = x^2(x-7)^2-100 
x^2(x-7)^2 là 1 số dương, vậy min của biểu thức trên là (-100)

14 tháng 4 2018

Giải:

a) Ta có: \(-x^2-6x+15\)

\(=-x^2-6x-9+24\)

\(=-\left(x^2+6x+9\right)+24\)

\(=-\left(x+3\right)^2+24\)

\(-\left(x+3\right)^2\le0;\forall x\)

\(\Leftrightarrow-\left(x+3\right)^2+24\le24\)

Vậy giá trị lớn nhất của biểu thức trên là 24.

Câu b làm tương tự (phân tích đa thức thành nhân tử hoặc đưa về dạng hằng đẳng thức).

14 tháng 4 2018

a)

\(E=-x^2-6x+15\)

\(E=-\left(x^2+6x-15\right)\)

\(E=-\left(x^2+2.x.3+9-24\right)\)

\(E=-\left(x+3\right)^2+24\)

Ta có: \(-\left(x+3\right)^2\le0\) với mọi x thuộc R

\(\Rightarrow-\left(x+3\right)^2+24\le24\)

Vậy GTLN của E = 24 khi x = -3

12 tháng 7 2018

a) \(A= 2x^2- 3x +1\)

\(=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{1}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

Vậy Amin = \(-\dfrac{1}{8}\) khi \(x=\dfrac{3}{4}\)

b) \(B= 4x^2 +7x + 13\)

\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{7}{4}+\dfrac{49}{16}+\dfrac{159}{16}\)

\(=\left(2x+\dfrac{7}{4}\right)^2+\dfrac{159}{16}\ge\dfrac{159}{16}\)

Vậy Bmin = \(\dfrac{159}{16}\) khi \(x=-\dfrac{7}{8}\)

c) \(C= 5-8x+x^2\)

\(=x^2-2\cdot x\cdot4+16+9\)

\(=\left(x-4\right)^2+9\ge9\)

Vậy Cmin = 9 khi x = 4

d) \(D = (x-1)(x+2)(x+3)(x+6)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy Dmin = - 36 khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

28 tháng 6 2019

 A= 1/(x^2+2x+3)

Ta có x^2+2x+3=(x+1)^2 +2

Vì (x+1) ^2 \(\ge\)0 với mọi x

=> (x+1)^2 +2\(\ge\)2 với mọi x

=> vậy GTLN của 1/(x^2+2x+3) =1/2

Dấu bằng xảy ra khi x+1=0 => x=-1

28 tháng 6 2019

B= 1/(x^2 +x+1)

Ta có : x^2 +x+ 1 =(x^2+x+1/4)+3/4

= ( x+1/2)^2 +3/4

Vì (x+1/2)^2 \(\ge\)0 với mọi x

=> (x+1/2)^2 +3/4 \(\ge\)3/4

Vậy GTLN của 1/(x^2+x+1) =3/4

Dấu "=" xảy ra khi (x+1/2)=0 => x=1/2