K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Khó quá 

Chịu thoy

Nếu mk lm xng con nay thì sang năm vẫn chưa xng đôu

...army

25 tháng 9 2018

(x-2)(x-5)(x^2-7x-10) = (x^2-7x+10)(x^2-7x-10) = (x^2-7x)^2-100 = x^2(x-7)^2-100 
x^2(x-7)^2 là 1 số dương, vậy min của biểu thức trên là (-100)

2 tháng 7 2016

GTNN:

\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)

\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2

GTLL:

\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)

\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)

\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6

nha . cảm ơn . chúc bạn học tốt

15 tháng 9 2018

Bài 1 :

\(P=x^2+3x+7\)

\(=x^2+2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy GTNN của P là : \(\dfrac{19}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

\(Q=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-2x-5x+10\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x\right)^2-100\ge-100\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x^2-7x=0\Leftrightarrow x\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

Vậy GTNN của Q là : \(-100\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

Bài 2 : \(A=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTLN của A là : \(7\Leftrightarrow x=2\)

\(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy GTLN của \(B\) là : \(\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

28 tháng 4 2017

A = x2 - 7x + 11

<=> A = x2 - 7x + (3,5)2 - 1,25

<=> A = (x - 3,5)2 - 1,25

Do: (x - 3,5)2 lớn hơn hoặc = 0

=> A lớn hơn hoặc bằng -1,25

Dấu "=" xảy ra khi: (x - 3,5)= 0   <=> x = 3,5

24 tháng 10 2017

Vậy x = 3,5

Ta có : \(7x^2+8xy+7y^2=10\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)

\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)

​Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)

\(\Rightarrow x^2+y^2\le\frac{5}{3}\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow7x^2-8x^2+7x^2=10\)

\(\Leftrightarrow6x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{3}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)

hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)

Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)

\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)

Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)

\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)

\(\Rightarrow11\left(x^2+y^2\right)\ge10\)

\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)

Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)

\(\Leftrightarrow7x^2+8x^2+7x^2=10\)

\(\Leftrightarrow22x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{11}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)

Vậy ...

10 tháng 7 2018

I=(2x-1)^2+(x-3)^2

=4x^2-4x+1+x^2-6x+9

=5x^2-10x+10

=5(x^2-2x+1)+5

=5(x-1)^2+5

Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x

Dấu bằng xảy ra khi:(x-1)^2=0

                              x-1=0

                              x=1

Vậy GTNN cua biểu thức T=5 khi x=1

c,M=(x-2)(x-5)(x^2-7x+10)

=(x^2-7x+10)^2

Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:

x^2-7x+10=0

(x-2)(x-5)=0

Suy ra:x=2 hoặc x=5

Vậy GTNN của M là 0 tại x=2 hoặc x=5

d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2

=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2

=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2

bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x

Dấu = xảy ra khi:x=1,y=-1

Vậy GTNN của T là -2 tại x=1,y=-1

b,ý b dễ rồi mình cho bạn đáp án

GTNN cua N là 1 tại x=0

GTNN là giá trị nhỏ nhất.Chúc bạn học tốt

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

18 tháng 8 2019

a) \(A=x^2+3x+7=x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+7\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

Đẳng thức xảy ra khi x = -3/2

b) \(B=\left[\left(x-2\right)\left(x-5\right)\right]\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

Đặt \(x^2-7x=t\).

\(B=t^2-10^2\ge-10^2=-100\)

Đẳng thức xảy rakhi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

19 tháng 7 2017

Ta có : M = x2 + y2 - x + 6y + 10

= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)

= (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\)

Mà ; (x -  \(\frac{1}{2}\) )2 và (y + 3)\(\ge0\forall x\)

Nên :  (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3

19 tháng 7 2017

Ta có :  \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\)  và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3