Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)
Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)
Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)
\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)
\(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(\frac{1}{a+2}+\frac{3}{b+4}+\frac{2}{c+3}\le1\Leftrightarrow x+y+z\le1\)
\(Q=\left(\frac{1}{x}-1\right)\left(\frac{3}{y}-3\right)\left(\frac{2}{z}-2\right)=\frac{6\left(1-x\right)\left(1-y\right)\left(1-z\right)}{xyz}\ge\frac{6\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\ge6.2.2.2=48\)
Min Q = 48 khi x =y=z = 1/3 => a =1 ; b =5; c =3
Ta có:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
\(=\frac{ab}{\sqrt{1-a-b+ab}}+\frac{bc}{\sqrt{1-b-c+bc}}+\frac{ca}{\sqrt{1-a-c+ca}}\)
\(=\frac{ab}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{bc}{\sqrt{\left(1-b\right)\left(1-c\right)}}+\frac{ca}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)
\(\le\frac{a^2}{2\left(1-a\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{a^2}{2\left(1-a\right)}\)
\(=-\left(\frac{a^2}{a-1}+\frac{b^2}{b-1}+\frac{c^2}{c-1}\right)\)
\(\le-\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{1}{3-1}=\frac{1}{2}\)
Vậy GTLN là \(P=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
Biến đổi một chút, ta có:\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}\)
\(=\sqrt{\frac{bc}{a+bc}}\cdot\sqrt{\frac{bc}{c+a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{ca}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right);\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{a+b}\right)\)
Cộng ba bất đẳng thức trên lại theo vế, ta có:
\(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé