Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
( x + 1 )2 \(\ge\)0
Dấu " = " xảy ra khi x = -1
\(\Rightarrow\)5 + ( x + 1 )2 \(\ge\)5
GTLN của A là 5 khi x = -1
a) Ta có : A = |x - 3| + |x - 5|
= |3 - x| + |x - 5|
\(\ge\)|3 - x + x - 5|
= | - 2|
= 2
Dấu "=" xảy ra <=> (x - 3)(x - 5) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Vậy MinA = 2 khi x = 3 hoặc x = 5
b) Ta có B = |x + 1| + |7 - x|
\(\ge\)|x + 1 + 7 - x|
= |8|
= 8
Dấu "=" xảy ra <=> (x + 1)(x - 7) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)
Vậy MinB = 8 khi x = - 1 hoặc x = 7
Ta có tính chất :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)
\(\rightarrow A\ge\left|4x-8\right|\)
Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :
\(\rightarrow A\ge0\forall x\in R\)
Dấu "= " xảy ra khi :
\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=0\Leftrightarrow x=2\)
\(A=\left|x-105\right|+\left|x+5\right|=\left|105-x\right|+\left|x+5\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|105-x+x-5\right|=100\)
Vậy GTNN của A là 100 khi \(-5\le x\le105\)