Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4
Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)
Vậy Amin=4 khi \(-3\le x\le1\)
A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
= \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)
= 1 - x + x + 3
= 4
\(C=\sqrt{2x^2-6x+5}=\sqrt{2\left(x^2-3x+\frac{9}{4}\right)+\frac{1}{2}}\)
\(C=\sqrt{2\left(x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2\right)+\frac{1}{2}}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\frac{1}{2}\)
Vậy GTNN của C là \(\frac{1}{2}\) \(\Leftrightarrow x=\frac{3}{2}\)
mình nhầm. thay GTNN \(\frac{1}{2}\)thành \(\sqrt{\frac{1}{2}}\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(=\left|1-3x\right|+\left|3x-2\right|\)
\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)
Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)
a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)
d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)
√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2.
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1.
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3.
___Dấu bằng xảy ra khi và chỉ khi x = - 1.
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3
ai tích mình mình sẽ tích lại
Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)
Dấu "=" bạn tự xét nhé!
Ta có \(A=\sqrt{2x^2+6x+5}\)
\(=\sqrt{2\left(x^2+3x+\dfrac{5}{2}\right)}\)
\(=\sqrt{2\left(x^2+3x+\dfrac{9}{4}+\dfrac{1}{4}\right)}\)
\(=\sqrt{2\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}\right]}\ge\sqrt{2.\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)
Vậy GTNN của A là \(\dfrac{\sqrt{2}}{2}\) khi \(\left(x+\dfrac{3}{2}\right)^2=0\Leftrightarrow x=-\dfrac{3}{2}\)
Học tốt nhé