\(\frac{-1}{\left|2x+6\right|+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

Vì tử số là số âm nên mẫu số phải là số dương nhỏ nhất.

Ta thấy |2x + 6| lớn hơn hoặc bằng 0 => |2x + 6| + 1 lớn hơn hoặc bằng 1

Dâu "=" xảy ra khi 2x + 6 = 0 => x = (0 - 6) : 2 = -3

Vậy min A = -1 khi x = -3 

22 tháng 7 2015

l2x+6l >= 0 => l2x+ 6 l  + 1 >= 1 với mọi x 

=> -1/ l2x+6l + 1 >= -1/1 = - 1

VẬy GTNN của A là  -1 khi 2x + 6 = 0 => x = - 3  

  

1 tháng 6 2021

Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)

Vậy Min A  = -1 <=> X = -1/6

1 tháng 6 2021

a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)

Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6

DD
28 tháng 5 2021

a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)

Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).

b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)

Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).

28 tháng 5 2021

Tìm GTNN và GTLN mà

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

6 tháng 4 2019

B = 4/5. 5/6. 6/7. 7/8... 99/100

B = 4/100= 1/25

6 tháng 4 2018

https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/

vào đây gợi ý nhé

k mik đi

@_@

6 tháng 4 2018

đây nè

Đáp án và đề thi HSG toán 6 phòng GD&ĐT Hoằng Hóa 2014-2015

21 tháng 7 2018

Ta có : \(\left|x+3\right|\ge0\forall x\)

\(\left|2x-5\right|\ge0\forall x\)

\(\left|x-7\right|\ge0\forall x\)

\(\Rightarrow\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|\ge0\forall x\)

Dấu = xảy ra khi : \(\left|x+3\right|=0\)\(\left|2x-5\right|=0\)\(\left|x-7\right|=0\)

\(\left|x+3\right|=0\Rightarrow x=-3\)

*\(\left|2x-5\right|=0\Rightarrow x=\frac{5}{2}\)

 *\(\left|x-7\right|=0\Rightarrow x=7\)

TH1 : Với x = - 3 ta thay vào biểu thức  đề bài cho ta được:

\(\left|-3+3\right|+\left|2.\left(-3\right)-5\right|+\left|-3-7\right|\)  

\(=0+11+10=21\)

TH2 : Với \(x=\frac{5}{2}\)ta thay vào biểu thức  đề bài cho ta được:

\(\left|\frac{5}{2}+3\right|+\left|2.\frac{5}{2}-5\right|+\left|\frac{5}{2}-7\right|\)

\(=\frac{11}{2}+0+\frac{9}{2}=10\)

TH3 : Với x = 7 ta thay vào biểu thức  đề bài cho ta được:

\(\left|7+3\right|+\left|2.7-5\right|+\left|7-7\right|\)

\(=10+9+0=19\)

Vậy với \(x=\frac{5}{2}\)thì \(\left|x+3\right|+\left|2.x-5\right|+\left|x-7\right|\)nhỏ nhất và = 10

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

19 tháng 6 2018

\(A=\left(2x+\frac{1}{3}\right)^4-1=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\)

Vì \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2\ge0\) nên \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\) hay \(A\ge-1\)

Nên GTNN của A là -1 đạt được khi \(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)