Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-2\right)^2+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(\Rightarrow MINM=2013\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
A = 4x2 - 4xy + y2 + 12x -6y + 16
=(2x - y)2 + 6.(2x - y) + 16
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
Bài làm:
Ta có: \(4x^2+2y^2+4xy-4x-8y+15\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+y^2-6y+9+5\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y-3\right)^2+5\)
\(=\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x+y-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
Vậy \(Min=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
4x2 + 2y2 + 4xy - 4x - 8y + 15
= [ ( 4x2 + 4xy + y2 ) - 2( 2x + y ) + 1 ] + ( y2 - 6y + 9 ) + 5
= ( 2x + y - 1 )2 + ( y - 3 )2 + 5
\(\hept{\begin{cases}\left(2x+y-1\right)^2\ge0\forall x,y\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y-1=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)
Vậy GTNN của biểu thức = 5 <=> x = -1 ; y = 3
\(Q=x^2+5y^2+4xy-2x-8y+2015\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+1+y^2-4y+4+2010\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+1+\left(y-2\right)^2+2010\)
\(=\left(x+2y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+2y-1=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy GTNN của Q là 2010 khi \(x=-3,y=2\)
Lời giải:
Ta có:
\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)
\(=(x^2+4y^2+9z^2-4xy+6xz-12yz)+2y^2+5z^2+4yz\)
\(=(x-2y+3z)^2+2(y^2+2yz+z^2)+3z^2\)
\(=(x-2y+3z)^2+2(y+z)^2+3z^2\)
\(\geq 0+2.0+3.0=0\)
Vậy GTNN của $B$ là $0$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)
\(2x^2-4xy+8y^2+7x+6y-15.\)
= \(x^2+x^2-4xy+4y^2+4y^2+7x+6y-15\)
= \(\left(x^2-4xy+4y^2\right)+\left[x^2+7x+\left(\frac{7}{2}\right)^2\right]+\left[4y^2+6y+\left(\frac{3}{2}\right)^2\right]-\left(\frac{7}{2}\right)^2-\left(\frac{3}{2}\right)^2-15\)
= \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\)
Vì \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2\ge0\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge0-\frac{59}{2}\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge-\frac{59}{2}\)
Vậy GTNN của bt là \(\frac{-59}{2}\Leftrightarrow\hept{\begin{cases}x-2y=0\\x+\frac{7}{2}=0\\2y+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\Rightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\y=-\frac{3}{2}\end{cases}}\\x=-\frac{7}{2}\\y=-\frac{3}{4}\end{cases}}\)