K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

19 tháng 1 2021

Ta có: \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất

Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\)  khi \(x=\dfrac{3}{4}\)

\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\)  Khi \(x=\dfrac{3}{4}\)

 

21 tháng 1 2021

Ta có: (2x−1)2≥0(2x−1)2≥0

⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất

Mà: 4x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−544x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−54

Dấu "=" xảy ra ⇔x=34⇔x=34

⇒min(4x2−6x+1)=−54.⇒min(4x2−6x+1)=−54.  khi x=34x=34

⇒(2x−1)2=14⇒(2x−1)2=14

⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5  Khi x=34

NV
20 tháng 1 2021

Đề sai, biểu thức này chỉ tồn tại max, ko tồn tại min

21 tháng 1 2021

họp lý

 

19 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Dấu "=" xảy ra <=> a = b = c

21 tháng 3 2017

mình cũng kb

NV
13 tháng 6 2021

BĐT cần chứng minh tương đương:

\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

13 tháng 6 2021

Áp dụng BĐT với hai số dương ta có:

`a+b>=2sqrt{ab}`

`1/a+1/b>=2/sqrt{ab}`

`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`

Dấu "=" xảy ra khi `a=b>0`

11 tháng 4 2017

đề có cho thỏa mãn gì ko

12 tháng 4 2017

Bài này mình từng giải rồi. Đề đúng phải là:

Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.

Tìm GTNN của \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Bài giải:

Ta có: \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}\)

\(\Leftrightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{6a-b-c-2}{8}\left(1\right)\)

Tương tự \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{6b-c-a-2}{8}\left(2\right)\\\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6c-a-b-2}{8}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6a-b-c-2}{8}+\dfrac{6b-c-a-2}{8}+\dfrac{6c-a-b-2}{8}\)

\(=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(a=b=c=1\)

PS: Chép đề thì cẩn thận vô bạn.

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/hoi-dap/question/1023940.html

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Lời giải:

Bài toán có max chứ không có min bạn nhé.

ĐK: $x\neq \frac{1}{2}$

$\frac{4x^2-6x+1}{(2x-1)^2}=\frac{(4x^2-4x+1)-(2x-1)-1}{(2x-1)^2}$

$=\frac{(2x-1)^2-(2x-1)-1}{(2x-1)^2}=1-\frac{1}{2x-1}-\frac{1}{(2x-1)^2}=\frac{5}{4}-(\frac{1}{2x-1}+\frac{1}{2})^2\leq \frac{5}{4}$

Vậy GTLN của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $\frac{1}{2x-1}+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

17 tháng 9 2020

Mình cảm ơn nhé!