Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất
Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\) khi \(x=\dfrac{3}{4}\)
\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\) Khi \(x=\dfrac{3}{4}\)
Ta có: (2x−1)2≥0(2x−1)2≥0
⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất
Mà: 4x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−544x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−54
Dấu "=" xảy ra ⇔x=34⇔x=34
⇒min(4x2−6x+1)=−54.⇒min(4x2−6x+1)=−54. khi x=34x=34
⇒(2x−1)2=14⇒(2x−1)2=14
⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5 Khi x=34
Lời giải:
Bài toán có max chứ không có min bạn nhé.
ĐK: $x\neq \frac{1}{2}$
$\frac{4x^2-6x+1}{(2x-1)^2}=\frac{(4x^2-4x+1)-(2x-1)-1}{(2x-1)^2}$
$=\frac{(2x-1)^2-(2x-1)-1}{(2x-1)^2}=1-\frac{1}{2x-1}-\frac{1}{(2x-1)^2}=\frac{5}{4}-(\frac{1}{2x-1}+\frac{1}{2})^2\leq \frac{5}{4}$
Vậy GTLN của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $\frac{1}{2x-1}+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
\(A=x^2-4xy+4y^2+\frac{x}{2}+\frac{2}{x}+3=\left(x-2y\right)^2+\left(\frac{x}{2}+\frac{2}{x}\right)+3\)
\(\left(x-2y\right)^2\ge0\)
\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\)
\(A\ge0+2+3=5\)
Giá trị nhỏ nhất của A bằng 5
"=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2y=0\\\frac{x}{2}=\frac{2}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x dương
ĐK: \(\left(x-2\right)\left(x^2+1\right)+2x\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\ne0\Leftrightarrow x\ne-1;2\)
Ta có: \(A=\frac{x^2\left(x-2\right)+4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+1\right)}=\frac{x^2+4}{\left(x+1\right)^2}=\frac{t^2-2t+5}{t^2}\left(t=x+1\right)\)
\(=\frac{5}{t^2}-\frac{2}{t}+1=5\left(\frac{1}{t}-\frac{1}{5}\right)^2+\frac{4}{5}\ge\frac{4}{5}\)
Đẳng thức xảy ra khi t = 5 hay x=4
Vậy..
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/hoi-dap/question/1023940.html