Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Khai triển ta có:
\(M=x^2y^2+\frac{1}{x^2y^2}+2\)
Áp dụng BĐT AM-GM:
\(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
Tiếp tục áp dụng BĐT AM-GM:
\(M=\left(x^2y^2+\frac{1}{16^2x^2y^2}\right)+\frac{255}{256x^2y^2}+2\geq 2\sqrt{\frac{1}{16^2}}+\frac{255}{256x^2y^2}+2\)
\(\Leftrightarrow M\geq \frac{17}{8}+\frac{255}{256x^2y^2}\) . Mà \(xy\leq \frac{1}{4}\)
\(\Rightarrow M\geq \frac{17}{8}+\frac{255}{256x^2y^2}\geq \frac{17}{8}+\frac{255}{256.\frac{1}{16}}=\frac{289}{16}\)
Vậy \(M_{\min}=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
- Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)
\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
Gọi M là giao điểm (d1); (d2)
Hoành độ M thỏa mãn:
\(2x-5=x+2\Leftrightarrow x=7\Rightarrow y=9\)
\(\Rightarrow M\left(7;9\right)\)
Để 3 đường thẳng đồng quy khi và chỉ khi (d3) cũng đi qua M
\(\Leftrightarrow9=7a-12\Rightarrow a=3\)
thỏa mãn cái biểu thức á bạn, chỗ \(x_2\) ( trước dấu "=" ) có mũ 2 không?
Theo đề là Ko bạn ạ. Thế nên mình mới nhờ các bạn giúp ạ
\(M=x^2+\dfrac{1}{x^2}+2+y^2+\dfrac{1}{y^2}+2=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)
ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\) theo BĐT Cô si: \(xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\dfrac{\left(x+y\right)^2}{2}\Rightarrow1-2xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x^2+y^2\ge\dfrac{1}{2}\)
Áp dụng tiếp BĐT Cô Si :\(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\ge\dfrac{2}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\ge\dfrac{1}{2}+8+4=\dfrac{25}{2}\)
dấu = xảy ra tại \(x=y=\dfrac{1}{2}\)
Bài 35:
(d3) cắt (d1) và (d2)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1\ne2\\m+1\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-5\end{matrix}\right.\)
Hoành độ của I là nghiệm của phương trình:
\(2x+5=-4x-1\Leftrightarrow x=-1\)
Thay \(x=-1\) vào phương trình đường thẳng (d1) có:
\(y=-2+5\Leftrightarrow y=3\)
Do đó toạ độ của điểm I là \(\left(-1;3\right)\)
Thay \(x=-1,y=3\) vào phương trình đường thẳng (d3) có:
\(3=-m-1+2m-1\Leftrightarrow m=5\)
Vậy \(m=5\) là giá trị cần tìm
a/ ĐKXĐ : \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\sqrt{x}\left(x-1\right)\)
Vậy...
b/ Ta có :
\(P>0\)
\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ
Vậy \(0< x< 1\) thì P > 0
c/ Ta có :
\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
Thay vào P rồi bạn tự tính ra nhé :>
Ghi lại cho rõ đề nha!
\(B=\frac{x^2-2x+2020}{x^2}\)
\(B=\frac{2020}{x^2}-\frac{2}{x}+1\)
Đặt \(\frac{1}{x}=a\left(x\ne0\right)\) thì:
\(B=2020a^2-2a+1=2020\left(a-\frac{1}{2020}\right)^2+\frac{2019}{2020}\)
Đẳng thức xảy ra khi \(a=\frac{1}{2020}\Leftrightarrow x=2020\)
Đúng ko :)
Bạn lm lại từng bước giúp mình đc ko
Bạn làm gọn quá mình ko hiểu. Cảm ơn bạn