K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

a, ta có :(x-3)\(^2\)\(\ge\)0 nên N \(\ge\)6

Min N =6 khi (x-3)\(^2\)=0\(\Rightarrow\)x-3=0\(\Rightarrow\)x=3

Vậy Min N=6 với x=3

b, vì (x-\(^{\frac{5}{4}}\))\(^2\)\(\ge\)0 nên 2(x-\(\frac{5}{4}\))\(\ge\)0\(\Rightarrow\) P \(\ge\frac{39}{8}\)

Min P=\(\frac{39}{8}\) với 2(x-\(\frac{5}{4}\))=0\(\Rightarrow\)x-\(\frac{5}{4}\)=0\(\Rightarrow x=\frac{5}{4}\)

vậy Min P=\(\frac{39}{8}\) với x =\(\frac{5}{4}\)

 

9 tháng 12 2016

a)Ta thấy: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+6\ge6\)

\(\Rightarrow N\ge6\)

Dấu "=" khi \(x=3\)

Vậy \(Min_N=6\) khi \(x=3\)

b)Ta thấy: \(\left(x-\frac{5}{4}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{5}{4}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\)

Dấu "=" khi \(x=\frac{5}{4}\)

Vậy \(Min_P=\frac{39}{8}\) khi \(x=\frac{5}{4}\)

23 tháng 7 2018

1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)

Dấu bằng xảy ra khi: |x| = 0 <=> x = 0

Vậy Amin = -2 khi và chỉ khi x = 0

2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8

Vậy Bmin = 3/4 khi và chỉ khi x = 8

3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)

Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6

25 tháng 7 2018

mai tuấn kiệt ok

19 tháng 7 2018

a, \(A=\left|2x-5\right|+\left|2x-12\right|=\left|2x-5\right|+\left|12-2x\right|\ge\left|2x-5+12-2x\right|=7\)

Dấu "=" xảy ra khi \(\left(2x-5\right)\left(12-2x\right)\ge0\Leftrightarrow\frac{5}{2}\le x\le6\)

Vậy Amin=7 khi 5/2 <= x <= 6

b, \(B=\left|3x+6\right|+\left|3x-8\right|=\left|3x+6\right|+\left|8-3x\right|\ge\left|3x+6+8-3x\right|=14\)

Dấu "=" xảy ra khi \(\left(3x+6\right)\left(8-3x\right)\ge0\Leftrightarrow-2\le x\le\frac{8}{3}\)

Vậy...

c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|=2+2=4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy...

4 tháng 2 2019

Trước hết ta chứng minh bổ đề: \(|a|+|b|\ge|a+b|.\left(1\right)\)

CM: \(\left(1\right)\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(|a+b\right)^2\)

                  \(\Leftrightarrow a^2+b^2+2|ab|\ge a^2+b^2+2ab\)

                  \(\Leftrightarrow2|ab|\ge2ab\)

                  \(\Leftrightarrow\left|ab\right|\ge ab\)(điều này đúng do tính chất của giá trị tuyệt đối).

Vậy ta có đpcm. Dấu bằng xảy ra \(\Leftrightarrow ab\ge0.\)

a) A = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|.\)

Ta thấy rằng \(\left|x-2\right|\ge0\)với mọi x.

Áp dụng bổ đề trên ta có:

\(A\ge\left|x-1+3-x\right|+0=\left|2\right|+0=2+0=2.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}}\Leftrightarrow x=2.\)

Vậy GTNN của A bằng 2 khi x = 2.

b) Áp dụng bổ đề trên ta có:\(B=\left|x-4\right|+\left|7-x\right|+\left|x-5\right|+\left|6-x\right|\ge\left|x-4+7-x\right|+\left|x-5+6-x\right|=\left|3\right|+\left|1\right|=3+1=4.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)\left(7-x\right)\ge0\\\left(x-5\right)\left(6-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow}5\le x\le6}\)(vì với mọi x nằm giữa 5 và 6 thì cũng nằm giữa 4 và 7).

Vậy GTNN của B bằng 4 khi \(5\le x\le6.\)

4 tháng 2 2019

a;\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

Ta có +) \(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)

+)\(\left|x-2\right|\ge0\)Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)

\(\Rightarrow A_{min}=2\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow x=2}\)

b;\(B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|6-x\right|+\left|7-x\right|\)

Ta có +) \(\left|x-4\right|+\left|7-x\right|\ge\left|x-4+7-x\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)\left(7-x\right)\ge0\Leftrightarrow4\le x\le7\)

+) \(\left|x-5\right|+\left|6-x\right|\ge\left|x-5+6-x\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(6-x\right)\ge0\Leftrightarrow5\le x\le6\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\ge4\)

\(\Rightarrow B_{min}=4\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow5\le x\le6}\)

6 tháng 11 2015

1)  Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại

   Nếu -2</ x < 3  => -x+3 +x+2 =1  => 5=1 loại

   Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại

Vậy không có x nào thỏa mãn

2) C  không có GTNN

  D= /x -2 /  + / 8 -x/   >/     /x-2+8 -x /  =  /6/ = 6

D min = 6 khi  2</  x   </  8 

6 tháng 11 2015

Mình làm rồi mà.

Câu hỏi tương tự nhé

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)

12 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks