Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left|3x-1\right|=a\) nên \(A=a^2-4a+5\)
\(\Rightarrow A=\left(a^2-4a+4\right)+1=\left(a-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)
\(=5\left(x^2+1\right)\)
vì\(x^2+1\ge1\forall x\)
\(\Leftrightarrow B\ge5\forall x\)
dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)
vậy B đạt GTNN =5 khi x=0
Bài 2:
a) Ta có: \(A=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
hay \(x=\dfrac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)
câu a là hằng đẳng thức luôn
A=(2x+4)^2
B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)
câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ
Bài 1:
a)(4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-x-6-12x2+28x+5+1
=27x
b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
Bài 2:
a)3x(x-4)-x(5+3x)=-34
=>3x2-12x-3x2-5x=-34
=>-17x=-34
=>x=2
Vậy x=2
b)(3x+1)2+(5x-2)2=34(x+2)(x-2)
=>9x2+6x+1+25x2-20x+4=34(x2-4)
=>34x2-14x+5-34x2+136=0
=>-14x+141=0
=>-14x=-141
=>x=\(\frac{141}{14}\)
Vậy x=\(\frac{141}{14}\)
c)x3+3x2+3x+28=0
=>x3-x2+7x+4x2-4x+28=0
=>x(x2-x+7)+4(x2-x+7)=0
=>(x+4)(x2-x+7)=0
\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)
=>(2) vô nghiệm
Vậy x=-4
Đặt \(y=\left|3x-1\right|,y\ge0\) thì
\(A=y^2-4y+5=\left(y^2-4y+4\right)+1=\left(y-2\right)^2+1\ge1\)
Min A = 1 <=> y = 2 <=> |3x-1| = 2 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{1}{3}\end{array}\right.\)
đặt |3x-5|= y ,ĐK : y >/ 0
F=y2-6y+10 đến đây đơn giản
ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)
\(A=\frac{8x^2-24x+32}{8\left(x-1\right)^2}=\frac{x^2-10x+25+7\left(x-1\right)^2}{8\left(x-1\right)^2}=\frac{\left(x-5\right)^2}{8\left(x-1\right)^2}+\frac{7}{8}\ge\frac{7}{8}\forall x\)
Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)
Vậy GTNN của A là \(\frac{7}{8}\) khi x = 5
nguồn ở đâu vậy
Đặt \(\left|3x-1\right|=a\)nên \(A=a^2-4a+5\)
Biến đổi A ta được \(A=a^2-4a+4+1=\left(a-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)