K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=5\left(x+1\right)^2+\left|y-3\right|-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi x=-1 và y=3

12 tháng 1 2021

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

12 tháng 1 2021

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).

20 tháng 2 2021

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)

\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)

\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)

21 tháng 1 2017

Áp dụng BĐT Cô - si cho 3 bộ số không âm

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)

\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)

\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)

Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)

21 tháng 2 2022

`Answer:`

`A=|x+2|+|x+5|=|x+2|+|-x-5|`

Mà \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|-x-5\right|\ge0\end{cases}}\Leftrightarrow\left|x+2\right|+\left|-x-5\right|\ge\left|x+2-x-5\right|=3\)

Vậy giá trị nhỏ nhất của `A=3<=>(x+2)(-x-5)>=0<=>-5<x<-2`

`B=|x-3|+|x-1|+|x+1|+|x+3|`

Mà `{(|x-3|>=0∀x),(|x-1|>=0∀x),(|x+1|>=0∀x),(|x+3|>=0∀x):}=>|x-3|+|x-1|+|x+1|+|x+3|>=0∀x`

Dấu "=" xảy ra `<=>{(x-3=0),(x-1=0),(x+1=0),(x+3=0):}<=>{(x=3),(x=1),(x=-1),(x=-3):}`

11 tháng 12 2020

\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)

\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)

\(\Leftrightarrow2xy=3m^2-6m+4\)

\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)

\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)

\("="\Leftrightarrow m=1\)

NV
25 tháng 2 2020

\(A=\frac{\left(1-x^2\right)\left(1-y^2\right)}{x^2y^2}=\frac{\left[\left(x+y\right)^2-x^2\right]\left[\left(x+y\right)^2-y^2\right]}{x^2y^2}\)

\(=\frac{y\left(2x+y\right).x\left(x+2y\right)}{x^2y^2}=\frac{2\left(x^2+y^2\right)+5xy}{xy}=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge4\sqrt{\frac{xy}{xy}}+5=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 12 2020

giúp mik với ạ

13 tháng 12 2020

Mà GTLN hay GTNN vậy