Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
GTLN của P=1/2+0=1/2=>x=0
GTLN của Q=5-2.0=5=>x=1
a)\(A=\sqrt{x}-1+2\)
\(\Rightarrow A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0,\forall x\)
\(\Rightarrow\sqrt{x}+1\ge1,\forall x\)
Dấu "=" xảy ra khi và chỉ khi
\(\sqrt{x}=0\Rightarrow\sqrt{x}=\sqrt{0}\Rightarrow x=0\)
Vậy \(minA=1\)khi và chỉ khi \(x=0\)
b)\(B=-\sqrt{x}+1+5\)
\(\Rightarrow B=-\sqrt{x}+6\)
\(\Rightarrow-\sqrt{x}\le0,\forall x\)
\(\Rightarrow-\sqrt{x}+6\le6\)
\(-\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{x}=\sqrt{0}\Rightarrow x=0\)
Vậy \(maxB=6\)khi và chỉ khi \(x=0\)