Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với nha
mình cảm ơn các bạn nhiều>-<
ĐK: \(x\ge0\)
\(P=x+a+b+\frac{ab}{x}=\left(x+\frac{ab}{x}\right)+a+b\)
Áp dụng BĐT cosi cho 2 số dương x, ab/x ta có:
\(x+\frac{ab}{x}\ge2\sqrt{ab}\)
=> \(P\ge2\sqrt{ab}+a+b\)
Dấu "=" xảy ra <=> \(x=\frac{ab}{x}\Leftrightarrow x^2=ab\Leftrightarrow x=\sqrt{ab}\)( vì x dương)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
Trả lời:
a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)
\(=\frac{x+\sqrt{x}-6}{x-9}\)
\(A=\left(\frac{\sqrt{X}}{\sqrt{X}+1}+\frac{\sqrt{X}+1}{1-\sqrt{X}}+\frac{4\sqrt{X}+1}{X-1}\right)\left(\frac{X\sqrt{X}}{\sqrt{X}+1}-\sqrt{X}\right)\)
\(=\left(\frac{\sqrt{X}-\sqrt{X}-1+4\sqrt{X}+1}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\right)\left(X-\sqrt{X}\right)\)
\(=\frac{4\sqrt{X}}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}.\sqrt{X}\left(\sqrt{X}-1\right)\)
\(A=\frac{4X}{\sqrt{X}+1}\)
B) dễ rồi làm tiếp ik chỉ cần biến về \(\left(a+b\right)^2+hs\le hs\) là được
Lời giải:
a) ĐK: $x\geq 2006$
Áp dụng BĐT Cô-si cho các số không âm ta có:
$\sqrt{x-2006}\leq (x-2006)+\frac{1}{4}$
$\Rightarrow A=x-\sqrt{x-2006}\geq x-[(x-2006)+\frac{1}{4}]$
Hay $A\geq \frac{8023}{4}$
Vậy GTNN của $A$ là $\frac{8023}{4}$. Dấu "=" xảy ra khi $x-2006=\frac{1}{4}\Leftrightarrow x=\frac{8025}{4}$
b)
ĐK: $x\geq 0$
Do $x\geq 0$ nên $B=x+\sqrt{x}\geq 0+0=0$
Vậy GTNN của $B$ là $0$ khi $x=0$