Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a) \(A=3x^2+x-1=3\left(x^2+\frac{x}{3}+\frac{1}{36}\right)-\frac{13}{12}=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow x+\frac{1}{6}=0\)\(\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(MinA=-\frac{13}{12}\Leftrightarrow x=-\frac{1}{6}\)
b)\(B=t^2-6t=\left(t^2-6t+9\right)-9=\left(t-3\right)^2-9\ge-9\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t-3=0\)\(\Leftrightarrow t=3\)
Vậy \(MinB=-9\Leftrightarrow t=3\)
c)\(C=x^2+\frac{3}{2}y^2-2x-4y+4\)
\(=\left(x^2-2x+1\right)+\frac{3}{2}\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{3}{2}\left(y-\frac{4}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{4}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
Vậy \(MinC=\frac{1}{3}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
d)\(D=2x^2+y^2-2xy+4x+2024\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+2020\)
\(=\left(x-y\right)^2+\left(x+2\right)^2+2020\ge2020\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}}\)\(\Leftrightarrow x=y=-2\)
Vậy \(MinD=2020\Leftrightarrow x=y=-2\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
Ta có:
A= \(3x^2-2xy+y^2-4x+5\)
= \(x^2-2xy+y^2+2\left(x^2-2x+1\right)+3\)
= \(\left(x-y\right)^2+2\left(x-1\right)^2+3\)
Vì \(\left(x-y\right)^2\ge0;2\left(x-1\right)^2\ge0\)
\(\Rightarrow\) GTNN của A là 3.
Dấu "=" xảy ra khi x=y=1