Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x^3+2x^2+2x^2+4x-5x-10+7 chia hết cho x+2
=>\(x+2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{-1;-3;5;-9\right\}\)
\(100^3-99^1+1\)
\(=100^3-\left(100-1\right)^3+1\)
\(=100^3-\left[100^3-3.100^2+3.100-1\right]+1\)
\(=3.100^2-3.100+2\)
\(=29702\)
a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2
= 2x^2-4xy+2y^2/x^2-xy+y^2
= 2.(x^2-2xy+y^2)/x^2-xy+y^2
= 2.(x-y)^2/x^2-xy+y^2
>= 0 ( vì x^2-xy+y^2 > 0 )
Dấu "=" xảy ra <=> x-y=0 <=> x=y
Vậy ..........
b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x
= (x-1995)^2 + 7980x >= 7980x
=> M < = x/7980x = 1/7980 ( vì x > 0 )
Dấu "=" xảy ra <=> x-1995=0 <=> x=1995
Vậy ...............
\(a,Đề.sai\\ b,=\left(x^2+3x+1\right)^2+\left(x^2+3x+1\right)-6\\ =\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
g: \(x\left(x-5\right)-3\left(x-5\right)=\left(x-5\right)\left(x-3\right)\)
h: \(x\left(x-y\right)-2\left(y-x\right)=\left(x-y\right)\left(x+2\right)\)
i: \(x\left(x+3\right)+5\left(x+3\right)=\left(x+3\right)\left(x+5\right)\)
k: \(m\left(x-3\right)-n\left(x-3\right)=\left(x-3\right)\left(m-n\right)\)
l: \(5x-10=5\left(x-2\right)\)
\(a)5m-5n=5(m-n)\\b) -2x-2y=-2(x+y)\\c)-7+7y=-7(1-y)\\d)10x^3-15x^2=5x^2(2x-3)\\e) x^2-xy=x(x-y)\\f)9x^4-6x^2=3x^2(3x^2-2)\\g)x(x-5)-3(x-5)=(x-3)(x-5)\\h)x(x-y)-2(y-x)=x(x-y)+2(x-y)=(x+2)(x-y)\\i)x(x+3)+5(3+x)=(x+5)(x+3)\\k)m(x-3)+n(3-x)=m(x-3)-n(x-3)=(m-n)(x-3)\\l)5x-10=5(x-2) \)
\(C=4x^2+10y-4x+10y-2\)
\(=\left(4x^2-4x+1\right)+\left(10y^2+10y+\frac{5}{2}\right)-\frac{11}{2}\)
\(=\left(2x-1\right)^2+\left(\sqrt{10y}+\sqrt{\frac{5}{2}}\right)^2-\frac{11}{2}\ge\frac{-11}{2}\)
Vậy \(C_{min}=-\frac{11}{2}\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
và \(\sqrt{10}y+\sqrt{\frac{5}{2}}=0\Leftrightarrow y\frac{-\sqrt{5}}{\sqrt{20}}=-0,5\)