K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

\(C=4x^2+10y-4x+10y-2\)

\(=\left(4x^2-4x+1\right)+\left(10y^2+10y+\frac{5}{2}\right)-\frac{11}{2}\)

\(=\left(2x-1\right)^2+\left(\sqrt{10y}+\sqrt{\frac{5}{2}}\right)^2-\frac{11}{2}\ge\frac{-11}{2}\)

Vậy \(C_{min}=-\frac{11}{2}\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

và \(\sqrt{10}y+\sqrt{\frac{5}{2}}=0\Leftrightarrow y\frac{-\sqrt{5}}{\sqrt{20}}=-0,5\)

12 tháng 9 2016

\(100^3-99^1+1\)

\(=100^3-\left(100-1\right)^3+1\)

\(=100^3-\left[100^3-3.100^2+3.100-1\right]+1\)

\(=3.100^2-3.100+2\)

\(=29702\)

 

12 tháng 7 2016

a) \(S=25x^2-20x+7=\left[\left(5x\right)^2-2.5x.2+4\right]+3=\left(5x-2\right)^2+3>0\) với mọi x

b) \(P=9x^2-6xy+2y^2+1=\left[\left(3x\right)^2-2.3x.y+y^2\right]+y^2+1=\left(3x-y\right)^2+y^2+1>0\)với mọi x

12 tháng 7 2016

25x2  - 20x + 7 = ( 25x2 - 20x + 4 ) + 3 = (5x-2)2 + 3 > 0

còn câu b, P = 9x2 - 6xy + 2y2 + 1 = (3x-y)2 + y2 + 1 >0

14 tháng 1 2016

Tuấn Nguyễn: 100% k sai

3 tháng 11 2019

\(2x^2+9y^2+6xy-18y-8x+15\)

\(=\left(x^2+6xy+9y^2\right)-6x-18y+9+\left(x^2-2x+1\right)+5\)

\(=\left(x+3y\right)^2-6\left(x+3y\right)+9+\left(x-1\right)^2+5\)

\(=\left(x+3y-3\right)^2+\left(x-1\right)^2+5\)

\(\ge5\)

Dấu "=" xảy ra tại \(x=1;y=\frac{2}{3}\)

Vậy......

8 tháng 1 2017

chẳng biết làm gì. giải pt à

8 tháng 1 2017

Giải pt hay nhân hả bạn??

1 tháng 9 2020

\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)

Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)

Vậy minA = 143/4 <=> x = - 9/2

\(B=x^2-2x+15=\left(x-1\right)^2+14\)

Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minB = 14 <=> x = 1

\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)

Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)

Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)

Vậy minC = - 4 <=> x = 2/3

1 tháng 9 2020

Bài 1.

A = x2 + 9x + 56

= ( x2 + 9x + 81/4 ) + 143/4

= ( x + 9/2 )2 + 143/4

( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4

Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2

=> MinA = 143/4 <=> x = -9/2

B = x2 - 2x + 15

= ( x2 - 2x + 1 ) + 14

= ( x - 1 )2 + 14

( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14 

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinB = 14 <=> x = 1 

C = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4

9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3

=> MinC = -4 <=> x = 2/3

Bài 2.

D = -9x2 + x

= -9( x2 - 1/9x + 1/324 ) + 1/36

= -9( x - 1/18 )2 + 1/36

-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36

Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18

=> MaxD = 1/36 <=> x = 1/18

E = -x2 + 3x - 5

= -( x2 - 3x + 9/4 ) - 11/4

= -( x - 3/2 )2 - 11/4

-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxE = -11/4 <=> x = 3/2

F = -16x2 - 5x

= -16( x2 + 5/16x + 25/1024 ) + 25/64

= -16( x + 5/32 )2 + 25/64 

-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64

Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32

=> MaxF = 25/64 <=> x = -5/32