Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left|3x+8,4\right|\ge0\left(\forall x\right)\Rightarrow A=\left|3x+8,4\right|-14,2\ge-14,2\)
Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x+8,4=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)
Vậy Amin = -14,2 khi và chỉ khi x = 2,8
b) \(\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)
\(\ge\left|x-2002+2001-x\right|=\left|-1\right|=1\)
Dấu "=" xảy ra <=> \(\left(x-2002\right)\left(2001-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2002\ge0\\2001-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2002\\x\le2001\end{cases}}}\) (loại)
Hoặc \(\hept{\begin{cases}x-2002\le0\\2001-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2002\\x\ge2001\end{cases}}}\)
\(\Leftrightarrow2001\le x\le2002\)
Vậy GTNN của biểu thức bằng 1 khi và chỉ khi \(2001\le x\le2002\)
TÌm GTNN của biểu thức :
A = l x-2 l + l x+8 l
ai nhanh và đúng mình sẽ tik cho nha, mình đang gấp quá
Kuri:bạn sai 1 lỗi rất lớn đó là x ko thể nhận cùng lúc 2 giá trị vs bài này ta nên dùng BĐT |a|+|b|>=|a+b|
\(\left|x-2\right|+\left|x+8\right|\ge\left|x-2-8-x\right|=10\)
\(\Rightarrow A\ge10\)
Dấu = khi ab>=0 =>(x-2)(x+8)>=0 =>2=<x=<8
Vậy...
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\)
\(\Rightarrow A\ge x-1+x-2+0+4-x+5-x\)
\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1\ge0;x-2\ge0\\x-3=0\\x-4\le0;x-5\le0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\Rightarrow x\in\left(2;3;4\right)\)
Vậy MinA = 6 \(\Leftrightarrow x\in\left(2,3,4\right)\)
GTNN LÀ GÌ VẬY BẠN
MK KHÔNG HIỂU HÃY GIẢI THÍCH CHO MK HIỂU NHA
a, Đặt A=3x+7x−1.
Ta có: A=3x+7x−1=3x−3+10x−1=3x−3x−1+10x−1=3+10x−1
Để A∈Z thì 10x−1∈Z⇒10⋮x−1⇔x−1∈U(10)={±1;±2;±5;±10}
Ta có bảng sau:
x−1 | 1 | −1 | 2 | −2 | 5 | −5 | 10 | −10 |
x | 2 | 0 | 3 | −1 | 6 | −4 | 11 | −9 |
Vậy, với x∈{−9;−4;−1;0;2;3;6;11}thì A=3x+7x−1∈Z.
Đúng 4 Bình luận 2 Câu trả lời được H lựa chọn Báo cáo sai phạm
Nguyễn Huy Tú4 tháng 5 2017 lúc 19:45
Câu 3:
a, Ta có: −(x+1)2008≤0
⇒P=2010−(x+1)2008≤2010
Dấu " = " khi (x+1)2008=0⇒x+1=0⇒x=−1
Vậy MAXP=2010 khi x = -1
b, Ta có: −|3−x|≤0
⇒Q=1010−|3−x|≤1010
Dấu " = " khi |3−x|=0⇒x=3
Vậy MAXQ=1010 khi x = 3
c, Vì (x−3)2+1≥0 nên để C lớn nhất thì (x−3)2+1 nhỏ nhất
Ta có: (x−3)2≥0⇒(x−3)2+1≥1
⇒C=5(x−3)2+1≤51=5
Dấu " = " khi (x−3)2=0⇒x=3
Vậy MAXC=5 khi x = 3
d, Do |x−2|+2≥0 nên để D lớn nhất thì |x−2|+2 nhỏ nhất
Ta có: |x−2|≥0⇒|x−2|+2≥2
⇒D=4|x−2|+2≤42=2
Dấu " = " khi |x−2|=0⇒x=2
Vậy MAXD=2 khi x = 2
Đúng 3 Bình luận Câu trả lời được H lựa chọn Báo cáo sai phạm
Bạn tham khảo cách làm của bài này rồi áp vào bài bạn nhé !!!
VD : Cho các số thực ko âm x, y thay đổi và thỏa mản 3x + y = 9 tìm GTLN GTNN của biểu thức
A= x^3 -xy
Đáp án :
Ta rút được y=9-3x. Với điều kiện x, y không âm ta được 0=<x=<3.
* A=x³ -x(9-3x)=x³ + 3x² -9x.
Ta có A-27=...=(x-3)(x+3)² =<0 vì x-3=<0, (x+3)² >0.
Dấu bằng xảy ra khi và chỉ khi x=3, từ đó có GTLN của A là 27. Đạt đc khi x=3, y=0.
Lại có A+5=...=(x-1)² (x+5) >=0 với mọi x thỏa mãn 0=<x=<3.
GTNN của A là -5, đạt đc khi x=1; y=6.
Vì |x-2| \(\ge\) 0 nên A = |x-2| + 5 \(\ge\) 0+5 = 5.
Đẳng thức xảy ra <=> |x-2| = 0 <=> x-2 = 0 <=> x=2.
Vậy GTNN của A bằng 5 khi x = 2.
Ta có:
|x-9|\(\ge\)0\(\forall\)x
|x-9|+8\(\ge\)0\(\forall\)x
|x-9|+8-x\(\ge\)-x\(\forall\)x
A\(\ge\)-x\(\forall\)x
Dấu "=" xảy ra khi và chỉ khi |x-9|=0
\(\Leftrightarrow\)x-9=0
\(\Leftrightarrow\)x=9
Vậy MIN A=-x với x=9