\(\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

ĐKXĐ : \(a\ge1\)

\(A=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)

\(A=\sqrt{a-1-4\sqrt{a-1}+4}+\sqrt{a-1-8\sqrt{a-1}+16}\)

\(A=\sqrt{\left(\sqrt{a-1}-2\right)^2}+\sqrt{\left(\sqrt{a-1}-4\right)^2}\)

\(A=\left|\sqrt{a-1}-2\right|+\left|4-\sqrt{a-1}\right|\ge\left|\sqrt{a-1}-2+4-\sqrt{a-1}\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\sqrt{a-1}-2\right)\left(4-\sqrt{a-1}\right)\ge0\)

TH1 : \(\hept{\begin{cases}\sqrt{a-1}-2\ge0\\4-\sqrt{a-1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge5\\a\le17\end{cases}\Leftrightarrow}5\le a\le17}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}\sqrt{a-1}-2\le0\\4-\sqrt{a-1}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\le5\\a\ge17\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A\) là \(2\) khi \(5\le a\le17\)

20 tháng 6 2019

Ta có : \(x+3-4\sqrt{x-1}=\left(\sqrt{x-1}-2\right)^2\)và \(x+15-8\sqrt{x-1}=\left(\sqrt{x-1}-4\right)^2\)
Suy ra: B=\(\sqrt{x-1}-2+\sqrt{x-1}-4=2\sqrt{x-1}-6\)
Ta lại có : \(x-1\ge0\)=>\(B\ge-6\)dấu ''='' xảy ra khi: x-1=0 <=>x=1
Vậy minB=-6 khi x=1

Bài 1: Tính a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\) b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\) c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\) e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\) Bài 2: Giải pt: a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\) c)...
Đọc tiếp

Bài 1: Tính

a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

Bài 2: Giải pt:

a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)

f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Bài 3: Cho biểu thức:

P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

a) Rút gon P

b) Tìm x để P đạt GTNN, tìm GTNN đó.

c) Tìm x \(\in\) Z để P \(\in\) Z

@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.

3
21 tháng 7 2019
https://i.imgur.com/FpJWAoR.jpg

Tag nhầm người rồi anh ơi !! Em mới lớp 7 không biết mấy cái này

28 tháng 7 2019

\(A=\sqrt{x-2\sqrt{x-1}}\)\(+5\sqrt{x+3-4\sqrt{x-1}}\)\(+8\sqrt{x+8-6\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}\)\(+5\sqrt{x-1-4\sqrt{x-1}+4}\)\(+8\sqrt{x-1-6\sqrt{x-1}+9}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)\(+5\sqrt{\left(\sqrt{x-1}-2\right)^2}\)\(+8\sqrt{\left(\sqrt{x-1}-3\right)^2}\)

\(=\sqrt{x-1}-1+5\sqrt{x-1}-10+8\sqrt{x-1}-24\)

\(=16\sqrt{x-1}-35\)

\(A_{min}=-35\Leftrightarrow16\sqrt{x-1}=0\Rightarrow x=1\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

11 tháng 11 2018

\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}+2}\)

11 tháng 11 2018

b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)

Để P = 1/2

thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{a}-2=2\)

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(tm\right)\)